首页 > 论文 > 光电子技术 > 37卷 > 4期(pp:274-279)

基于石墨烯量子点复合材料的阻变器件及其导电机制

Resistive Switching Memory Based on Graphene Quantum Dot Composites and its Conductive Mechanism

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

制备了一种以石墨烯量子点(GQDs)∶聚乙烯吡咯烷酮(PVP)混合复合材料作为有机功能层,具有氧化铟锡(ITO)/GQDs∶PVP/铝(Al)夹层结构的阻变器件。通过控制石墨烯量子点在复合体系中的浓度有效地调控阻变器件的低阻态电流与高阻态电流之间的比值(开关比)。当GQDs含量为0.6 wt%时,开关比的最大值可达1.2×104。在室温下对该最优器件进行电流-电压(I-V)特性分析,结果表明,该器件具有高效的阻变特性,可实现 “写入-擦除”操作。对该I-V特性曲线进行拟合,发现器件在不同偏压下的载流子输运机制主要由热电子发射机制、空间电荷限制电流输运机制以及欧姆传导机制共同决定。基于这些导电机制并结合GQDs∶PVP复合材料的能带结构,讨论了GQDs∶PVP复合薄膜中的载流子捕获机制和释放机制;同时,也详细分析了载流子在该器件的捕获释放过程及引发的阻变行为。

Abstract

Resistive switch memory devices based on graphene quantum dots(GQDS)∶ polyvinyl pyrrolidone(PVP) hybrid composites were fabricated with a sandwich structure of indium tin oxid (ITO)/GQDs∶PVP/Al. By controlling the GQDs concentration of the as-prepared composites, the ratio between the low resistance current and the high resistance current (On/Off ratio) could be effectively modulated. The optimized device with a GQDs concentration of 0.6 wt% showed an ON/OFF ratio of as high as 1.2×104. The current-voltage (I-V) characteristics of the optimized devices were analyzed at room temperature. The results show that the device has an efficient resistive switch behavior, which could realize “write-erase” operation. On the basis of the I-V fitting, it is found that the carriers transport mechanisms of the device under different voltage biases are dominated by thermionic emission conduction mechanism, space-charge-limited current mechanism, and Ohmic conduction mechanism, respectively. The carriers capture and release phenomenon in GQDs∶PVP composite are discussed further based on the possibly proposed conduction mechanisms and the band structure of GQDs∶PVP hybrid composites. The carriers capture and release process of the carrier in the device and the resulting resistive switch behaviors are also analyzed in detail.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O484.3

DOI:10.19453/j.cnki.1005-488x.2017.04.010

所属栏目:研究与试制

基金项目:中国博士后科学基金资助项目(20080430096)

收稿日期:2017-08-30

修改稿日期:--

网络出版日期:--

作者单位    点击查看

张永志:福建船政交通职业学院 信息工程系,福州 350007
吴朝兴:韩国汉阳大学 电子与计算机工程系, 首尔 韩国133791

联系人作者:张永志(zyznh@foxmail.com)

备注:张永志(1987—),男,主要从事光电器件方向的研究;

【1】Scott J C, Bozano L D. Nonvolatile memory elements based on organic materials [J].Advanced Materials, 2007,19(11): 1452-1463.

【2】Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application [J]. Nano Letters, 2009,9(4): 1636-1643.

【3】Tsai Y T, Chang T C, Lin C C, et al. Influence of nanocrystals on resistive switching characteristic in binary metal oxides memory devices [J]. Electrochem Solid State Letters, 2011,14(3) :H135-H138.

【4】Ma L, Liu J, Yang Y. Organic electrical bistable devices and rewritable memory cells [J]. Applied Physics Letters,2002,80(16): 2997-2999.

【5】Tseng R J, Huang J X , Ouyang J, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory [J]. Nano Letters, 2005,5(6): 1077-1080.

【6】Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures [J]. ACS Nano, 2013,7(4): 3246-3252.

【7】Yuan X C, Tang J L,Zeng H Z,et al.Abnormal coexistence of unipolar,bipolar,and threshold resistive switching in an Al/NiO/ITO structure[J].Nanoscale Research Letter,2014,9(1):1-5.

【8】Shen J, Zhu Y, Yang X, et al. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices [J]. Chemical Communications, 2012,48(31) : 3686-3699.

【9】Li F S, Kou L J, Chen W C,et al.Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes [J]. NPG Asia Mater, 2013, 5(8):e60-e64.

【10】Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue luminescent graphene quantum dots [J]. Advanced Materials ,2010, 22(6):734-738.

【11】Son D I, Park D H, Kim T W, et al. Electrolumines cence of single active layer polymer-nanocrystal hybrid light-emitting diode with inversion symmetry [J]. Nano-technology, 2009,20(27):275205-275208.

【12】Simmons J G. Conduction in thin dielectric films [J]. Journal of Physics D:Applied Physics,1971,4(5):613-617.

【13】Son D I, Park D H, Choi W K, et al. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer [J]. Nanotechnology,2009,20(19):195203-195208.

【14】Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J]. Nature Nanotechnology, 2010,5(2): 148~153.

【15】Liu S J, Lin Z H, Zhao Q, et al. Flash-memory effect for polyfluorenes with on-chain iridium(III) complexes [J]. Advance Functional Materials, 2011, 21(5):979-985.

【16】Majee S K, Majumdar H S, Bolognesi A, et al. Electrical bistability and memory applications of poly(p-phenylenevinylene) films [J]. Synthetic Metals, 2006, 156(11-13): 828-832.

【17】Wu C X, Li F S, Guo T L, et al. Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers[J]. Organic Electronics,2012,13(1):178-183.

【18】Liu J Q, Zeng Z Y , Cao X H, et al. Preparation of MoS2 polyvinyl pyrrolidone Nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes [J]. Small,2012,8(22):3517-3522.

【19】Ding Z C, Hao Z, Meng B, et al. Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cell [J]. Nano Energy, 2015,15(1):186–192.

【20】Wu C, Li F, Guo T. Efficient tristable resistive memory based on single layer graphene/ insulating polymer multi-stacking layer [J]. Applied Physics Letters,2014, 104(18):183105.

【21】Majumdar H S , Baral J K, Ikkala O , et al. Fullerene-based bistable devices and associated negative differential resistance effect [J]. Organic Electronics, 2005,6(4):188-192.

引用该论文

ZHANG Yongzhi,WU Chaoxing. Resistive Switching Memory Based on Graphene Quantum Dot Composites and its Conductive Mechanism[J]. Optoelectronic Technology, 2017, 37(4): 274-279

张永志,吴朝兴. 基于石墨烯量子点复合材料的阻变器件及其导电机制[J]. 光电子技术, 2017, 37(4): 274-279

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF