首页 > 论文 > 光通信研究 > 43卷 > 6期(pp:2-11)

高速光纤传输技术进展(特邀)

Advances in High-speed Optical Fiber Transmission Technology (Invited)

张帆  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤通信系统和网络是支撑信息社会的重要基础设施。大数据时代云计算、移动互连和虚拟现实等新型业务的迅速发展对信息传送能力提出了日益增长的迫切需求。为了应对这种需求,光纤传输技术向着更高速率和更大容量不断发展。文章介绍了高速光纤传输近年来的主要技术进展,讨论了面向长距离的相干检测和面向中短距离的直接检测光纤传输使能技术,总结了高波特率光纤传输技术的最新发展与未来趋势。

Abstract

Optical systems and networks are important infrastructures to support information society. In the Big Data era, the emerging applications such as cloud computing, mobile interconnection, and virtual reality demand an ever-increasing capacity of information transportation. To meet this requirement, optical fiber transmission technology keeps the developing towards high-speed and large capacity. In this paper, we introduce the main recent advances in high-speed optical fiber transmission and discuss some enabling technologies of coherent detection for long haul transmission and direct detection for medium and short distance transmission. Some new technologies are summarized and a perspective is presented for high baud rate optical fiber transmission.

投稿润色
补充资料

中图分类号:TN915

DOI:10.13756/j.gtxyj.2017.06.001

所属栏目:特邀稿件

基金项目:国家自然科学基金资助项目(61535002,61475004)

收稿日期:2017-10-16

修改稿日期:--

网络出版日期:--

作者单位    点击查看

张帆:北京大学 区域光纤通信网与新型光通信系统国家重点实验室, 北京 100871

备注:张帆(1975-),男,河南开封人。教授,工学博士,博士生导师,洪堡学者,IEEE高级会员和美国光学学会高级会员,曾任多个国际学术会议ACP、OECC、IEEE Photonics Conference等技术程序委员会成员。发表国际主流学术期刊和会议论文120余篇。主要从事高速光通信和光子学领域研究。

【1】Kao K C, Hockham G A. Dielectric-fibre Surface Waveguides for Optical Frequencies [J]. Proc IEE,1966,113 (7): 1151-1158.

【2】Mears R J, Reekie L, Jauncey I M, et al. Low-noise Erbium-Doped Fibre Amplifier at 1.54 μm [J].Electron Lett, 1987,(23):1026-1028.

【3】Winzer P J, Neilson D T.From Scaling Disparities to Integrated Parallelism: A Decathlon for a Decade [J].Journal of Lightwave Technology,2017,35(5):1099-1115.

【4】Luo M, Li C, Yang Q, et al. 100.3-Tb/s (375×267.27-Gb/s) C- and L-band Transmission over 80-km SSMF Using DFT-S OFDM 128-QAM [C]//Asia Communications and Photonics Conference 2014. Shanghai, China: OSA, 2014:AF4B.1.

【5】Nokia. Nokia PSE-2 Super Coherent Technology [EB/OL].(2017-10-16)[2017-10-16]. https://networks.nokia.com/products/pse-2-super-coherent-technology.

【6】Micram. 100 GS/s Dual Channel Digital to Analog Converter System [EB/OL].(2017-10-16)[2017-10-16].http://micram.net/products/dac-board-systems/dac10002/.

【7】Tektronix.DPO70000SX ATI Performance Oscillo-scope [EB/OL].(2017-10-16)[2017-10-16].https://www.tek.com/oscilloscope/dpo70000sx.

【8】Schuh K, Buchali F, Idler W, et al. Single Carrier 1.2 Tbit/s Transmission over 300 km with PM-64 QAM at 100 GBaud [C]//OFC 2017. Los Angeles, USA: OSA, 2017:Th5B.5.

【9】Liu X. Emerging Technologies for Metro Optical Networking [R].Shenzhen: Huawei Technologies Co., Ltd.,2016.

【10】Khanna G, Spinnler B, CalabròS, et al. 400 G Single Carrier Transmission in 50 GHz Grid Enabled by Adaptive Digital Pre-Distortion [C]//OFC 2016.Anaheim,USA:OSA, 2016: Th3A.3.

【11】Jia Z. Experimental Demonstration of PDM-32QAM Single-Carrier 400 G over 1200-km Transmission Enabled by Training-assisted Pre-equalization and Look-up Table [C]//OFC 2016.Anaheim,USA:OSA,2016:Tu3A.4.

【12】Chien H C, Yu J. On Single-Carrier 400 G Line Side Optics Using PM-256QAM [C]// ECOC 2016.Düsseldorf,Germany:IEEE, 2016: 1-3.

【13】Bertran-Pardo O, Renaudier J, Mardoyan H, et al. Transmission of 50-GHz-Spaced Single-Carrier Channels at 516 Gb/s over 600 km [C]//OFC 2013. Anaheim, USA:OSA, 2013:OTh4E.2.

【14】Sowailem M Y S, Hoang T M, Morsy-Osman M, et al. 400-G Single Carrier 500-km Transmission with an InP Dual Polarization IQ Modulator [J]. IEEE Photonics Technology Letters, 2016, 28(11):1213-1216.

【15】Sowailem M Y S, Hoang T M, Morsy-Osman M, et al. 770-Gb/s PDM-32QAM Coherent Transmission Using InP Dual Polarization IQ Modulator [J].IEEE Photonics Technology Letters, 2017,29(5):442-445.

【16】Rahman T, Rafique D, Spinnler B, et al. 38.4 Tb/s Transmission of Single-Carrier Serial Line-Rate 400 Gb/s PM-64QAM over 328 km for Metro and Data Center Interconnect Applications [C]// OFC 2016. Anaheim, USA:OSA, 2016:W3G.1.

【17】Rios-Müller R, Renaudier J, Brindel P,et al. 1-Terabit/s Net Data-Rate Transceiver based on Single-Carrier Nyquist-Shaped 124 GBaud PDM-32QAM [C]// OFC 2015.Los Angeles,USA:OSA,2015:Th5B.1.

【18】Mardoyan H, Rios-Müller R, Mestre M A, et al. Transmission of Single-Carrier Nyquist-Shaped 1-Tb/s Line-Rate Signal over 3,000 km [C]//OFC 2015. Los Angeles, USA:OSA, 2015:W3G.2.

【19】Zhu Y, Zou K, Ruan X, et al. Single Carrier 400 G Transmission with Single-ended Heterodyne Detection [J]. IEEE Photonics Technology Letters, 2017,29(21):1788-1791.

【20】Gao Y, Zhang F, Dou L, et al. Digital Post-equalization of Intrachannel Nonlinearities in Coherent DQPSK Transmission Systems [C]//Coherent Optical Technologies and Applications 2008. Boston, USA: OSA, 2008: JMB8.

【21】Ip E, Kahn J M. Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation [J].Journal of Lightwave Technology,2008, 26(20):3416-3425.

【22】Li X, Chen X, Goldfarb G,et al. Electronic Post-compensation of WDM Transmission Impairments Using Coherent Detection and Digital Signal Processing [J]. Optics Express, 2008,16(2): 880-888.

【23】Guiomar F P, Amado S B, Ferreira R M, et al. Multicarrier Digital Backpropagation for 400 G Optical Superchannels [J]. Journal of Lightwave Technology, 2016,34(8):1896-1907.

【24】Temprana E, Myslivets E, Kuo B P P, et al. Overcoming Kerr-induced Capacity Limit in Optical Fiber Transmission [J]. Science, 2015, 348(6242):1445-1448.

【25】Mecozzi A, Essiambre R. Nonlinear Shannon Limit in Pseudolinear Coherent Systems [J].Journal of Lightwave Technology, 2012, 30(12):2011-2024.

【26】Zhao Y, Dou L, Tao Z, et al. Accurate Nonlinear Model Beyond Nonlinear Noise Power Estimation [C]//OECC 2015. Shanghai, China: Shanghai Jiao Tong University, 2015:EI.2166-8892.

【27】Liang X, Kumar S. Multi-stage Perturbation Theory for Compensating Intra-channel Nonlinear Impairments in Fiber-optic Links [J].Optics Express, 2014,22(24):29733-29745.

【28】Gao Y, Zhang F, Dou L, et al. Intra-channel Nonlinearities Mitigation in Pseudo-linear Coherent QPSK Transmission Systems Via Nonlinear Electrical Equalizer [J].Optics Communications, 2009, 282(12):2421-2425.

【29】Zhang F, Gao Y, Luo Y, et al. Experimental Demonstration of Intra-channel Nonlinearity Mitigation in Coherent QPSK Systems with Nonlinear Electrical Equalizer [J].Electronics Letters, 2010,46(5):353-355.

【30】Liu L, Li L, Huang Y, et al. Intrachannel Nonlinearity Compensation by Inverse Volterra Series Transfer Function [J]. Journal of Lightwave Technology, 2012,30(3):310-316.

【31】Gagni M, Guiomar F P, Wabnitz S, et al. Simplified High-order Volterra Series Transfer Function for Optical Transmission Links [J].Optics Express,2017, 25(3):2446-2459.
<
参考文献原文>Derevyanko S A, Prilepsky J E, Turitsyn S K. Capacity Estimates for Optical Transmission Based on the Nonlinear Fourier Transform [J].Nature Communications, 2016, 7:12710.

【32】Turitsyn S K, Prilepsky J E, Le S T, et al. Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives [J]. Optica, 2017, 4(3):307-322.

【33】Liu X, Chraplyvy A, Winzer P, et al. Phase-conjugated Twin Waves for Communication Beyond the Kerr Nonlinearity Limit [J].Nature Photonics, 2013,7:560-568.

【34】Liu X.Twin-wave-based Optical Transmission with Enhanced Linear and Nonlinear Performances [J].J Lightw Technol,2015,33(5):1037-1043.

【35】Geller O, Dar R, Feder M, et al. A Shaping Algorithm for Mitigating Inter-Channel Nonlinear Phase-Noise in Nonlinear Fiber Systems [J].Journal Lightwave Technology, 2016,34(16): 3884-3889.

【36】Varnica N, Ma X, KavicA. Capacity of Power Constrained Memoryless AWGN Channels with Fixed Input Constellations [C]//IEEE Global Telecommunication Conference 2002.Taipei,China:IEEE,2002,2:1339-1343.

【37】Yankov M P, Zibar D, Forchhammer S, et al. Constellation Shaping for Fiber-optic Channels with QAM and High Spectral Efficiency [J].IEEE Photon Technol Lett, 2014,26(23):2407-2410.

【38】Yankov M P, Forchhammer S, Larsen K J,et al. Rate-adaptive Constellation Shaping for Turbo-coded BICM [C]//IEEE Int Conf Commun 2014. Sydney, Australia: IEEE, 2014:2112-2117.

【39】Yankov M P, Da Ros F, Silva E Pda, et al. Constellation Shaping for WDM Systems Using 256QAM/1024QAM with Probabilistic Optimization [J].Journal of Lightwave Technology, 2016,34(22):5146-5156.

【40】Pan C, Kschischang F R. Probabilistic 16-QAM Shaping in WDM Systems[J].Journal of Lightwave Technology, 2016, 34(18): 4285-4292.

【41】Bocherer G, Steiner F, Schulte P. Bandwidth Efficient and Rate Matched Low-Density Parity-Check Coded Modulation [J].IEEE Trans Comm, 2015, 63(12):4651-4665.

【42】Buchali F, Steiner F, Bcherer G, et al. Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration [J].Journal of Lightwave Technology, 2016,34(7):1599-1609.

【43】Ghazisaeidi A. 65 Tb/s Transoceanic Transmission Using Probabilistically-Shaped PDM-64QAM [C]//ECOC 2016 .Dusseldorf, Germany: VDE,2016:1-3.

【44】Tan Z, Yang C, Zhu Y, et al. High Speed Band-limited 850 nm VCSEL Link based on Time-domain Interference Elimination [J].IEEE Photonics Technology Letters, 2017,29(9):751-754.

【45】Kuchta D M, Huynh T N, Doany F E, et al. Error-free 56 Gb/s NRZ Modulation of a 1530-nm VCSEL Link [J].Journal of Lightwave Technology, 2016, 34(14):3275-3282.

【46】Zhang J, Yu J, Chien H C. EML-based IM/DD 400 G(4×112.5-Gbit/s)PAM-4 over 80 km SSMF based on Linear Pre-Equalization and Nonlinear LUT Pre-Distortion for Inter-DCI Applications [C]//OFC 2017. Los Angeles, USA:OSA, 2017:W4I.4.

【47】Kikuchi K, Kawakami S. Multi-level Signaling in the Stokes Space and Its Application to Large-capacity Optical Communications [J].Optics Express, 2014, 22(7):7374-7387.

【48】Morsy-Osman M, Chagnon M, Poulin M, et al. 224-Gb/s 10-km Transmission of PDM PAM-4 at 1.3 μm Using a Single Intensity-Modulated Laser and a Direct-Detection MIMO DSP-Based Receiver [J].Journal of Lightwave Technology,2015,33(7):1417-1424.

【49】Chagnon M, Morsy-Osman M, Patel D, et al. Digital Signal Processing for Dual-Polarization Intensity and Interpolarization Phase Modulation Formats Using Stokes Detection [J]. Journal of Lightwave Technology, 2016,34(1):188-195.

【50】Morsy-Osman M, Chagnon M, Plant D V. Four-Dimensional Modulation and Stokes Direct Detection of Polarization Division Multiplexed Intensities, Inter Polarization Phase and Inter Polarization Differential Phase [J].Journal of Lightwave Technology, 2016,34(7):1585-1592.

【51】Che D, Li A, Chen X, et al. Stokes Vector Direct Detection for Linear Complex Optical Channels [J].Journal of Lightwave Technology, 2015, 33(3):678-684.

【52】Chen X, Li A, Che D, et al. Block-wise Phase Switching for Double-sideband Direct Detected Optical OFDM Signals [J].Optics Express, 2013, 21(11):13436-13441.

【53】Chen Y, Hu R, Yang Q, et al.Two Orthogonal Carriers Assisted 101-Gb/s Dual-band DDO-OFDM Transmission over 320-km SSMF [J].Optics Express, 2015, 23(9):12065-12071.

【54】Peng W, Wu X, Feng K, et al. Spectrally Efficient Direct-detected OFDM Transmission Employing an Iterative Estimation and Cancellation Technique [J].Optics Express, 2009,17(11):9099-9111.

【55】Li Z, Erkln M S, Pachnicke S, et al. Signal-Signal Beat Interference Cancellation in Spectrally-efficient WDM Direct-detection Nyquist-pulse-shaped 16-QAM Subcarrier Modulation [J].Optics Express, 2015, 23(18): 23695-23709.

【56】Zou K, Zhu Y, Zhang F, et al. Spectrally Efficient Terabit Optical Transmission with Nyquist 64-QAM Half-cycle Subcarrier Modulation and Direct Detection [J].Opt Lett, 2016,41(12):2767-2770.

【57】Zhu Y, Ruan X, Chen Z, et al. 4×200 Gb/s Twin-SSB Nyquist Subcarrier Modulation WDM Transmission over 160 km SSMF with Direct Detection [C]// OFC 2017. Los Angeles, USA:OSA,2017: Tu3I.2.

【58】Zhu Y, Zou K, Zhang F. C-Band 112 Gb/s Nyquist Single Sideband Direct Detection Transmission over 960 km SSMF [J].IEEE Photonics Technology Letters, 2017,29(8): 651-654.

【59】Zou K, Zhu Y, Zhang F. 800 Gb/s (8 × 100 Gb/s) Nyquist Half-Cycle Single-Sideband Modulation Direct-Detection Transmission over 320 km SSMF at C-band [J].Journal of Lightwave Technology, 2017, 35(10):1900-1905.

【60】Zhu Y, Zou K, Chen Z, et al. 224 Gb/s Optical Carrier-Assisted Nyquist 16-QAM Half-Cycle Single-Sideband Direct Detection Transmission over 160 km SSMF [J].Journal of Lightwave Technology, 2017,35(9):1557-1564.

【61】Zhu Y, Ruan X, Zou K, et al. Beyond 200 G Direct Detection Transmission with Nyquist Asymmetric Twin-SSB Signal at C-band [J].Journal of Lightwave Technology, 2017,35(17): 3629-3636.

【62】Chen X, Antonelli C, Chandrasekhar S, et al. 218-Gb/s Single-wavelength, Single-polarization, Single-photodiode Transmission over 125-km of Standard Single Mode Fiber Using Kramers-Kronig Detection [C]//OFC 2017.Los Angeles, USA : OSA,2017: Th5B.6.

【63】Mecozzi A, Antonelli C, Shtaif M. Kramers-Kronig Coherent Receiver [J].Optica, 2016,3(11):1220-1227.

【64】Li Z, Erkln M S, Shi K, et al. SSBI Mitigation and the Kramers-Kronig Scheme in Single-Sideband Direct-Detection Transmission with Receiver-based Electronic Dispersion Compensation [J]. Journal of Lightwave Technology, 2017,35(10):1887-1893.

【65】Antonelli C, Shtaif M, Mecozzi A. Kramers-Kronig PAM transceiver [C]//OFC 2017. Los Angeles, USA:OSA, 2017:1-3.

引用该论文

ZHANG Fan. Advances in High-speed Optical Fiber Transmission Technology (Invited)[J]. Study On Optical Communications, 2017, 43(6): 2-11

张帆. 高速光纤传输技术进展(特邀)[J]. 光通信研究, 2017, 43(6): 2-11

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF