首页 > 论文 > 红外技术 > 39卷 > 12期(pp:1092-1097)

基于引导滤波的高动态红外图像增强处理算法

High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

主要论述了一种基于引导滤波器图像分层的高动态范围红外图像增强算法,通过引导滤波器将原始红外图像分解成基本层和细节层,再对它们分别采用相应的γ 变换进行压缩,最后按照一定比例将两部分重新合成,从而在保留图像细节的同时有效地使红外场景得到高动态灰度显示。引导滤波器不依赖于滤波半径与图像灰度值范围,执行效率更高,计算速度更快;另外,引导滤波器是局部线性模型,边缘保持特性更好,能克服其他滤波器在图像灰度变化比较剧烈的边缘易出现梯度翻转,造成图像出现“伪边缘”的缺陷。实验结果表明,通过本算法增强后的红外图像,不论是人眼的主观评价还是客观评价,都具有较强的细节增强能力和较佳的视觉表现,且具有实时处理的前景。

Abstract

This paper analyzes a new high dynamic range infrared image enhancement algorithm, based on a guided image filter with hierarchical techniques. This algorithm adopts a base component and a detail component extracted by the guided image filter, and the two components are compressed through gamma transform to fit the dynamic display range, and then recombined to obtain the output enhancement image. Independence from the filter radius and the image gray value range increases the execution efficiency and calculation speed of the guided filter technique. In addition, guided filter is a local linear model with better edge-keeping, which allows it to avoid in curring gradient flip and causing “pseudo edge” on the edge of the image, where the gray-level change is dramatic, unlike other filters. The experiments described in this paper show that image enhancement using this algorithm results in strong detail enhancement and better visual performance, regardless of subjective(human eyes) or objective evaluation. Moreover, this algorithm also has the potential for use in real-time processing.

投稿润色
补充资料

中图分类号:TN911.73

所属栏目:图像处理与仿真

收稿日期:2017-04-21

修改稿日期:2017-05-30

网络出版日期:--

作者单位    点击查看

葛 朋:昆明物理研究所,云南 昆明 650223
杨 波:昆明物理研究所,云南 昆明 650223
毛文彪:昆明物理研究所,云南 昆明 650223
陈绍林:昆明物理研究所,云南 昆明 650223
张巧燕:昆明物理研究所,云南 昆明 650223
韩庆林:昆明物理研究所,云南 昆明 650223

联系人作者:葛朋(542851112@qq.com)

备注:葛朋(1992-),男,硕士研究生,主要研究方向为红外图像处理技术。

【1】金伟其,刘斌,范永杰,等.红外图像细节增强技术研究进展[J].红外与激光工程,2011,40(12):2521-2527.
JIN Weiqi, LIU Bin, FAN Yongjie, et al. Review on infrared image detail enhancement techniques[J]. Infrared and Laser Engineering, 2011, 40(12): 2521-2527.

【2】詹筱.高动态范围红外图像压缩的细节增强算法研究[D].南京:南京理工大学,2014.
ZHAN Xiao. Research on the details of the high dynamic range infrared image compression enhancement algorithm[D]. Nanjing: Nanjing University of Science and Technology, 2014.

【3】HE K, SUN J, TANG X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

【4】谢伟,周玉钦,游敏.融合梯度信息的改进引导滤波[J].中国图象图形学报,2016,21(9):1119-1126.
XIE Wei, ZHOU Yuqin, YOU Min. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics, 2016, 21(9): 1119-1126.

【5】颜奇欢.CCD图像宽动态范围显示算法研究及其硬件实现[D].南京:南京理工大学,2015.
YAN Qihuan. Wide dynamic range image display algorithm of CCD and its hardware implementation[D]. Nanjing: Nanjing University of Science and Technology, 2015.

【6】刘斌,金伟其,王岭雪,等.基于空域和频域处理的红外图像细节增强算法[J].红外技术,2011,33(8):477-482.
LIU Bin, JIN Weiqi, WANG Lingxue, et al. Infrared image detail enhancement based on the spatial and frequency domain processing[J]. Infrared Technology, 2011, 33(8): 477-482.

【7】都琳,孙华燕,张延华,等.基于相机响应曲线的高动态范围图像融合[J].计算机工程与科学,2015,37(7):1331-1337.
DU Lin, SUN Huayan, ZHANG Yanhua, et al. High dynamic range image fusion based on camera response function[J]. Computer Engineering and Science, 2015, 37(7):1331-1337.

引用该论文

GE Peng,YANG Bo,MAO Wenbiao,CHEN Shaolin,ZHANG Qiaoyan,HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology, 2017, 39(12): 1092-1097

葛 朋,杨 波,毛文彪,陈绍林,张巧燕,韩庆林. 基于引导滤波的高动态红外图像增强处理算法[J]. 红外技术, 2017, 39(12): 1092-1097

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF