首页 > 论文 > 红外技术 > 39卷 > 12期(pp:1098-1106)

多约束的运动模糊图像盲复原方法

Multi-constraint Blind Restoration Method for Motion Blurred Image

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

运动模糊图像的盲复原一直以来都是一个极具挑战的问题。为了能够准确地估计出运动模糊核(Motion Blur Kernel:MBK),进而得到高质量的复原图像,提出了一种基于正则化技术的多约束运动模糊图像盲复原方法。首先,为了能够准确地提取出图像中的大尺度边缘,提出了一种基于梯度选择的稀疏图像平滑方法;然后,在MBK 的估计阶段,根据运动模糊核的内在特性,提出了一种多约束的正则化模型,同时结合提取的大尺度图像边缘,实现了对MBK 的准确估计;最后,采用了半二次性的变量分裂策略对在模糊核估计阶段所提出的多约束正则化模型进行最优化求解,能够在准确估计MBK 的同时得到高质量的复原图像。分别在人造的模糊图像和真实的模糊图像上进行了大量的实验,实验结果表明:提出的方法较近几年的一些代表性的较为成功的运动模糊图像盲复原方法相比,在主观的视觉效果和客观评价指标两方面都具有明显的改进。

Abstract

Blind restoration of a motion-blurred image is a long-standing and challenging inverse problem. In order to estimate motion blur kernel (MBK) accurately and obtain a high-quality restoration image, a regularization-based multi-constraint blind restoration method for motion-blurred images is proposed. First, in order to extract the large-scale edges from the image accurately, a sparse image smoothing method, based on gradient selection, is proposed. Then, in the MBK estimation step, based on the inherent properties of the MBK, a multi-constraint regularization model, which combines the extracted large-scale image edges, is proposed. Finally, the multi-constraint regularization model, which is proposed in the MBK estimation step, is addressed by using a half-quadratic variable splitting scheme. Extensive experiments are performed on both synthetic blurred images and real-life blurred images. Experimental results indicate that in comparison with several recent successful representative image blind restoration methods, the proposed method is an improvement not only in terms of subjective vision, but also in terms of objective numerical measurement.

投稿润色
补充资料

中图分类号:TN911.73

所属栏目:图像处理与仿真

基金项目:陕西省科技计划(工业攻关)项目(2014K05-22)。

收稿日期:2016-10-09

修改稿日期:2017-03-30

网络出版日期:--

作者单位    点击查看

卢 晶:商洛学院数学与计算机应用学院,陕西 商洛 726000
胡钢:西安理工大学理学院,陕西 西安 710054
秦新强:西安理工大学理学院,陕西 西安 710054

备注:卢晶(1983-),女(汉),陕西丹凤人,讲师,硕士,主要研究方向为图形图像处理、计算机辅助几何设计。

【1】GONZALEZRC,WoodsRE.数字图像处理[M].阮秋琦,阮宇智译.3版:北京:电子工业出版社,2011.
GONZALEZ R C, Woods R E. Digital Image Processing[M]. Translated by Qiuqi Ruan, Yuzhi Ruan. The third edition: Beijing: Publishing House of Electronic Industry, 2011.

【2】Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787-794.

【3】SHAN Q, JIA J, Agarwala A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics, 2008, 27(3): 1-10.

【4】Cho S, Lee S. Fast motion deblurring[J]. ACM Transactions on Graphics, 2009, 28(5): 145: 1-145:8.

【5】Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure[C]//IEEE Computer Vision and Pattern Recognition (CVPR), 2011: 233-240.

【6】CAI J F, JI H, LIU C Q, et al. Framelet-based blind motion deblurring from a single image [J]. IEEE Transactions on Image Processing, 2012, 21(2): 562-572.

【7】XU L, ZHENG S C, JIA J. Unnatural L0 sparse representation for natural image deblurring[C]//IEEE Conference on Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 1107-1114.

【8】Oliveira J P, Figueiredo M A T, Bioucas D J M. Parametric blur estimation for blind restoration of natural image: linear motion and out-of-focus[J]. IEEE Transactions on Image Processing, 2014, 23(1): 466-477.

【9】TANG S, GONG W G, LI W H, et al. Non-blind image deblurring method by local and nonlocal total variation models[J]. Signal Processing, 2014, 94: 339-349.

【10】徐焕宇,孙权森,李大禹,等.基于投影的稀疏表示与非局部正则化图像复原方法[J].电子学报,2014,42(7):1299-1304.
XU Huanyu, SUN Quansen, LI Dayu, et al. Projection-based image restoration via sparse representation and nonlocal regularization[J]. Acta Electronica Sinica, 2014, 42(7): 1299-1304.

【11】MA Z, LIAO R, TAO X, et al. Handling motion blur in multi-frame super-resolution[C]//IEEE Conference on Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 5224-5232.

【12】PAN J S, HU Z, SU Z X, et al. L0-regularized intensity and gradient prior for deblurring text images and beyond[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(2): 342- 355.

【13】Schmidt U, Jancsary J, Nowozin S, et al. Cascades of regression tree fields for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 677-689.

【14】Krishnan D, Fergus R. Fast image deconvolution using hyper -Laplacian priors[R]. in Proc. Adv. Neural Inf. Process. Syst, Whistler, BC, Canada, 2009.

引用该论文

LU Jing,HU Gang,QIN Xinqiang. Multi-constraint Blind Restoration Method for Motion Blurred Image[J]. Infrared Technology, 2017, 39(12): 1098-1106

卢 晶,胡钢,秦新强. 多约束的运动模糊图像盲复原方法[J]. 红外技术, 2017, 39(12): 1098-1106

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF