首页 > 论文 > 红外技术 > 39卷 > 12期(pp:1139-1143)

基于密度相似因子的电力红外图像分割方法

A Density-similarity-factor-based Segmentation Method for Infrared Images of Electric Equipment

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对电力设备红外图像包含大量的噪声,且设备边缘较为模糊,传统图像分割方法无法有效提取红外图像中电力设备等问题,提出一种基于密度相似因子的电力设备红外图像分割方法。首先,对获取的电力设备红外图像分别进行R、G、B 三通道光照不均匀性校正,其次,转换至Lab 彩色空间并构造待分割的特征空间信息点集,然后采用最小距离原则分配信息点到最邻近的聚类中心,再通过平均连接代价和k-距离邻域的平均连接代价,计算出信息点的密度相似因子,最终实现电力设备红外图像滤除噪声分割。通过与K 均值和模糊c 均值对实际绝缘子红外图像的分割实验定量对比,实验结果表明,本文所提方法具有噪声滤除能力,改善了分割效果。

Abstract

A density-similarity-factor-based segmentation method is proposed to solve the problem that power equipment cannot be distinguished effectively from noise and edge blur in infrared images by traditional image segmentation methods. First, the illumination non-uniformity of the R, G, and B channels of the original infrared images of the power equipment is corrected. Then, the R, G, and B are converted to lab color space, and the information point set of the feature space of the segmentation image is constructed. The information points are distributed to the nearest cluster center according to the principle of minimum distances. The density similarity factor of the information point is calculated from both the average connection cost, and the average connection cost of k-distance neighbors that is adopted to remove the noise points. The experimental results show that the proposed method eliminates the noise points and improves the effectiveness of segmentation in comparison with the traditional clustering algorithms that use K-means and fuzzy c-means.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

所属栏目:图像处理与仿真

收稿日期:2017-02-21

修改稿日期:2017-09-27

网络出版日期:--

作者单位    点击查看

余 彬:国网浙江杭州市萧山区供电公司,浙江 杭州 311200
万燕珍:国网浙江杭州市萧山区供电公司,浙江 杭州 311200
陈思超:国网浙江杭州市萧山区供电公司,浙江 杭州 311200
翁利国:国网浙江杭州市萧山区供电公司,浙江 杭州 311200

联系人作者:余彬(silinyb@hotmail.com)

备注:余彬(1987-),男,本科,工程师,主要研究领域为视频处理、信息安全。

【1】戴文远.基于红外热图像的故障诊断方法综述[J].红外,2013,34(2):16-21.
DAI Wenyuan. Review of fault diagnosis methods based on infrared thermal images[J]. Infrared, 2013, 34(2): 16-21.

【2】王启银,薛建东,任新辉.一种自适应的变电站设备红外图像分割方法[J].红外技术,2016,38(9):770-773.
WANG Qiyin, XUE Jiandong, REN Xinhui. An adaptive segmentation method of substation equipment infrared image[J]. Infrared Technology, 2016, 38(9): 770-773.

【3】Jaffery Z A, Dubey A K. Design of early fault detection technique for electrical assets using infrared thermograms[J]. International Journal of Electrical Power & Energy Systems, 2014, 63(12): 753-759.

【4】LI Z, YANG J, LIU G, et al. Unsupervised range-constrained thresholding[J]. Pattern Recognition Letters, 2011, 32(2): 392-402.

【5】CANN Y J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1986, 8(6): 679-98.

【6】XIA Q, CHEN Y K, ZHANG Z X, et al. Edge extraction algorithm of infrared thermal image based on Laplace operator and gray theory[J]. Infrared Technology, 2014, 36(5): 377-376.

【7】Adams R, Bischof L. Seeded region growing[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1994, 16(6): 641-647.

【8】林敏,陈建新,陈哲亮.基于边缘检测与分裂合并的图像分割算法[J].电子技术应用,2011,37(7):130-133.
LIN Min, CHEN Jianxin, CHEN Zheliang. An image segmentation algorithm based on edge detection and split-merge[J]. Application of Electronic Technique, 2011, 37(7): 130-133.

【9】高晶,蔡幸福,刘志强,等.基于区域生长的目标检测方法[J].北京工业大学学报,2016,42(6):856-861.
GAO Jing, CAI Xingfu, LIU Zhiqiang. Method of target detection based on region growing[J]. Journal of Beijing University of Technology, 2016, 42(6): 856-861.

【10】魏英姿,李静静.红外图像分割的改进模糊C均值聚类方法[J].计算机工程与应用,2014,50(9):163-166.
WEI Yingzi, LI Jingjing. Enhanced fuzzy C-Means clustering method for infrared image segmentation[J]. Computer Engineering and Applications, 2014, 50(9): 163-166.

【11】TAN Pangning, Steinbach M, Kumar V. Introduction to Data Mining[M]. USA: Addison Wesley Higher Education, 2006: 504-506.

【12】CHEN S, YANG X, TIAN Y. Discriminative hierarchical k-means tree for large-scale image classification[J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 26(9): 2200-2205.

【13】LINK P. A novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(5) : 1074-1087.

【14】CAO H, MA R, REN H, et al. Data-defect inspection with kernel-neighbor-density-change outlier factor[J]. IEEE Transactions on Automation Science & Engineering, 2016, PP(99): 1-14.

【15】Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.

引用该论文

YU Bin,WAN Yanzhen,CHEN Sichao,WENG Liguo. A Density-similarity-factor-based Segmentation Method for Infrared Images of Electric Equipment[J]. Infrared Technology, 2017, 39(12): 1139-1143

余 彬,万燕珍,陈思超,翁利国. 基于密度相似因子的电力红外图像分割方法[J]. 红外技术, 2017, 39(12): 1139-1143

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF