首页 > 论文 > Matter and Radiation at Extremes > 2卷 > 6期(pp:296-302)

A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration

A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources. The experiment was carried out on the 38 fs, ~0.5 J, 800 nm Ti:Sapphire laser in the 10 TW UT3 laser lab at University of Texas at Austin. The target gas was a high density pulsed gas jet composed of 90% He and 10% N2. The laser pulse with a peak intensity of 1.5×1018 W/cm2 interacted with the target to create a cylindrical plasma channel of 60 mm radius (FWHM) and 1.5 mm length (FWHM). Electron beams of ~80 pC with the Gaussian energy distribution centered at 37 MeV and a width of 30 MeV (FWHM) were produced via laser wakefield acceleration. Neutron fluences of ~2.4×106 per shot with hundreds of ps temporal length were generated through bremsstrahlung and subsequent photoneutron reactions in a 26.6 mm thick tungsten converter. Results were compared with those of simulations using EPOCH and GEANT4, showing agreement in electron spectrum, neutron fluence, neutron angular distribution and conversion rate.

投稿润色
补充资料

DOI:10.1016/j.mre.2017.10.003

所属栏目:Research Article

基金项目:This paper is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-14- 1-0045. The project was also supported by the NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSEFP014). Simulations were performed using GEANT4 on Lonestar 5 cluster provided by the TACC at University of Texas at Austin.

收稿日期:2017-07-06

修改稿日期:2017-09-20

网络出版日期:--

作者单位    点击查看

X.J. Jiao:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
J.M. Shaw:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
T. Wang:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
X.M. Wang:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
H. Tsai:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
P. Poth:Institut fu¨r Kernphysik, Technische Universit€at Darmstadt, Germany
I. Pomerantz:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USAThe School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, 69978, Israel
L.A. Labun:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
T. Toncian:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
M.C. Downer:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA
B.M. Hegelich:Center for High Energy Density Science, University of Texas, Austin, TX 78712, USA

联系人作者:X.J. Jiao(jiao@utexas.edu)

【1】A. Taylor, M. Dunne, S. Bennington, S. Ansell, I. Gardner, et al., A Route to the brightest possible neutron source? Science 315 (2007) 1092-1095, https://doi.org/10.1126/science.1127185.

【2】H.Z. Bilheux, R. McGreevy, I.S. Anderson (Eds.), Neutron Imaging and Applications, Springer, US, Boston, MA, 2009, https://doi.org/10.1007/ 978-0-387-78693-3.

【3】T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, et al., Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters, Nature 398 (1999) 489-492.

【4】F. Albert, A.G.R. Thomas, S.P.D. Mangles, S. Banerjee, S. Corde, et al., Laser wakefield accelerator based light sources: potential applications and requirements, Plasma Phys. Control. Fusion 56 (2014) 084015, https://doi.org/10.1088/0741-3335/56/8/084015.

【5】F. Albert, A.G.R. Thomas, Applications of laser wakefield acceleratorbased light sources, Plasma Phys. Control. Fusion 58 (2016) 103001, https://doi.org/10.1088/0741-3335/58/10/103001.

【6】A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85 (2013) 751-793, https:// doi.org/10.1103/RevModPhys.85.751.

【7】E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81 (2009) 1229-1285, https://doi.org/10.1103/RevModPhys.81.1229.

【8】H.-E. Tsai, X.Wang, J.M. Shaw, Z. Li, A.V. Arefiev, et al., Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror, Phys. Plasmas 22 (2015) 023106, https://doi.org/10.1063/1.4907655.

【9】I. Pomerantz, E. McCary, A.R. Meadows, A. Arefiev, A.C. Bernstein, et al., Ultrashort pulsed neutron source, Phys. Rev. Lett. 113 (2014), https:// doi.org/10.1103/PhysRevLett.113.184801.

【10】I. Mor, D. Vartsky, D. Bar, G. Feldman, M.B. Goldberg, et al., High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy, J. Instrum. 4 (2009), https://doi.org/10.1088/ 1748-0221/4/05/P05016. P05016eP05016.

【11】N.Guler, P.Volegov,A. Favalli, F.E.Merrill,K. Falk, et al.,Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility, J. Appl. Phys. 120 (2016) 154901, https://doi.org/10.1063/1.4964248.

【12】M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, et al., Bright laser-driven neutron source based on the relativistic transparency of solids, Phys. Rev. Lett. 110 (2013), https://doi.org/10.1103/PhysRevLett.110.044802.

【13】M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, et al., A bright neutron source driven by relativistic transparency of solids, J. Phys. Conf. Ser. 688 (2016) 012094, https://doi.org/10.1088/1742-6596/688/1/012094.

【14】K.L. Lancaster, S. Karsch, H. Habara, F.N. Beg, E.L. Clark, et al., Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography, Phys. Plasmas 11 (2004) 3404-3408, https://doi.org/10.1063/1.1756911.

【15】D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, et al., Characterization of a novel, short pulse laser-driven neutron source, Phys. Plasmas 20 (2013) 056706, https://doi.org/10.1063/1.4804640.

【16】C. Zulick, F. Dollar, V. Chvykov, J. Davis, G. Kalinchenko, et al., Energetic neutron beams generated from femtosecond laser plasma interactions, Appl. Phys. Lett. 102 (2013) 124101, https://doi.org/10.1063/ 1.4795723.

【17】W. Bang, M. Barbui, A. Bonasera, H.J. Quevedo, G. Dyer, et al., Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D 2-3 He or CD 4-3 He clustering gases, Phys. Rev. E 88 (2013), https://doi.org/10.1103/PhysRevE.88.033108.

【18】L. Disdier, J.-P. Gar?onnet, G. Malka, J.-L. Miquel, Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse, Phys. Rev. Lett. 82 (1999) 1454-1457, https:// doi.org/10.1103/PhysRevLett.82.1454.

【19】M. Storm, S. Jiang, D. Wertepny, C. Orban, J. Morrison, et al., Fast neutron production from lithium converters and laser driven protons, Phys. Plasmas 20 (2013) 053106, https://doi.org/10.1063/1.4803648.

【20】G.M. Petrov, D.P. Higginson, J. Davis, T.B. Petrova, J.M. McNaney, et al., Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers, Phys. Plasmas 19 (2012) 093106, https://doi.org/ 10.1063/1.4751460.

【21】D.P. Higginson, J.M. McNaney, D.C. Swift, T. Bartal, D.S. Hey, et al., Laser generated neutron source for neutron resonance spectroscopy, Phys. Plasmas 17 (2010) 100701, https://doi.org/10.1063/1.3484218.

【22】V.S. Belyaev, V.I. Vinogradov, A.P. Matafonov, V.P. Krainov, V.S. Lisitsa, et al., Neutron production in picosecond laser-generated plasma on a be target, Phys. At. Nucl. 69 (2006) 919-923, https://doi.org/10.1134/ S1063778806060019.

【23】C.L. Ellison, J. Fuchs, Optimizing laser-accelerated ion beams for a collimated neutron source, Phys. Plasmas 17 (2010) 113105, https:// doi.org/10.1063/1.3497011.

【24】D.P. Higginson, J.M. McNaney, D.C. Swift, G.M. Petrov, J. Davis, et al., Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions, Phys. Plasmas 18 (2011) 100703, https://doi.org/ 10.1063/1.3654040.

【25】S. Karsch, S. Du¨sterer, H. Schwoerer, F. Ewald, D. Habs, et al., Highintensity laser induced ion acceleration from heavy-water droplets, Phys. Rev. Lett. 91 (2003), https://doi.org/10.1103/PhysRevLett.91.015001.

【26】X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S.A. Yi, et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4 (2013), https://doi.org/10.1038/ncomms2988.

【27】S.A. Reed, V. Chvykov, G. Kalintchenko, T. Matsuoka, V. Yanovsky, et al., Efficient initiation of photonuclear reactions using quasimonoenergetic electron beams from laser wakefield acceleration, J. Appl. Phys. 102 (2007) 073103, https://doi.org/10.1063/1.2787159.

【28】D.N. Gupta, H. Suk, Energetic electron beam generation by laser-plasma interaction and its application for neutron production, J. Appl. Phys. 101 (2007) 114908, https://doi.org/10.1063/1.2738377.

【29】W.P. Leemans, D. Rodgers, P.E. Catravas, C.G.R. Geddes, G. Fubiani, et al., Gamma-neutron activation experiments using laser wakefield accelerators, Phys. Plasmas 8 (2001) 2510-2516, https://doi.org/10.1063/1.1352617.

【30】I. Pomerantz, E. McCary, A.R. Meadows, A. Arefiev, A.C. Bernstein, et al., in: K.W.D. Ledingham, K. Spohr, P. McKenna, P.R. Bolton, E. Esarey, et al. (Eds.), Laser Generation of Ultra-short Neutron Bursts from High Atomic Number Converters, 2015, p. 95140Q, https://doi.org/ 10.1117/12.2181494.

【31】M.A. Buckner, Improving Neutron Dosimetry Using Bubble Detector Technology, Oak Ridge National Lab., TN (United States), 1993.

【32】T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, et al., Contemporary particle-in-cell approach to laserplasma modelling, Plasma Phys. control. Fusion 57 (2015) 113001, https://doi.org/10.1088/0741-3335/57/11/113001.

【33】A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B Lasers Opt. 74 (2002) 355-361, https://doi.org/10.1007/s003400200795.

【34】J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270-278, https://doi.org/10.1109/TNS, 2006.869826.

【35】D. Sarenac, M.G. Huber, B. Heacock, M. Arif, C.W. Clark, et al., Holography with a neutron interferometer, Opt. Express 24 (2016) 22528-22535, https://doi.org/10.1364/OE.24.022528.

引用该论文

X.J. Jiao,J.M. Shaw,T. Wang,X.M. Wang,H. Tsai,P. Poth,I. Pomerantz,L.A. Labun,T. Toncian,M.C. Downer,B.M. Hegelich. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration[J]. Matter and Radiation at Extremes, 2017, 2(6): 296-302

X.J. Jiao,J.M. Shaw,T. Wang,X.M. Wang,H. Tsai,P. Poth,I. Pomerantz,L.A. Labun,T. Toncian,M.C. Downer,B.M. Hegelich. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration[J]. Matter and Radiation at Extremes, 2017, 2(6): 296-302

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF