首页 > 论文 > 大气与环境光学学报 > 13卷 > 1期(pp:52-58)

利用近场多波长激光雷达对生物气溶胶的偏振测量

Bioaerosols Polarization Measurement by Short-Range Multi-Wavelength Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于非球形粒子偏振特性,设计并试制了近场偏振激光雷达。该系统包含二个激光光源和退偏组件,激光束的线偏振度为1/500,偏振和 弹性散射信号由孔径200 mm的卡塞格林望远镜接收。在一个半封闭的生物气溶胶腔里,对10种生物气溶胶,按355, 532, 1064 nm的顺次 进行线偏振测量。数据分析结果表明,退偏比表现出较强的波长依赖性; 利用欧氏相关度和马哈拉诺比斯距离,可以确定多波长线偏数据的差异,并对生物气溶胶进行分辨。

Abstract

Based on polarization characteristics of non-spherical particles, a short-range lidar system for real-time standoff detection of bioaerosols was developed. The system includes two laser sources and depolarization components. Linear polarization purity of the laser beam is 1/500. The polarization and elastic scattering signals are collected by a Cassegrainian telescope. In a semi-closed bioaerosol chamber, 10 kinds of bioaerosol were mixed and interrogated by 355, 532, 1064 nm laser beam sequently. Linear polarization measurements were performed. The results showed that the depolarization ratios are wavelength-dependent, and the identification of bioaerosols can be achieved through the application of Euclidian correlation degree and Mhalanobis distance.

投稿润色
补充资料

中图分类号:TN247

DOI:10.3969/j.issn.1673-6141.2018.01.006

所属栏目:光学遥感

基金项目:Supported by National Natural Science Foundation of China(国家自然科学基金, 41375026)

收稿日期:2016-09-30

修改稿日期:2016-10-19

网络出版日期:--

作者单位    点击查看

杨辉:中国人民解放军陆军军官学院, 安徽 合肥 230031
赵雪松:中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
孙彦飞:中国人民解放军陆军军官学院, 安徽 合肥 230031
王铁栋:中国人民解放军陆军军官学院, 安徽 合肥 230031
宗军君:中国人民解放军陆军军官学院, 安徽 合肥 230031
庆丰:中国人民解放军陆军军官学院, 安徽 合肥 230031

联系人作者:杨辉(sanpedroman@163.com)

备注:杨辉 (1974-),男, 四川德阳人, 副教授, 博士, 主要从事生物战剂气溶胶、激光雷达和大气环境监测等方面的研究。

【1】Simard J R, Roy G, Mathieu P,et al. Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence[C]. IEEE T. Geosci. Remote, 2004, 42(4): 865-874.

【2】Roy G, Roy N. Standoff determination of the particle size and concentration of small optical depth clouds based on double scattering measurements: concept and experimental validation with bioaerosols[J].Appl. Opt. 2008, 47(9): 1336-1349.

【3】Sassen K.Polarization in Lidar[M]. //Chap. 2 in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. ed. by Weikamp C. New York: Springer, 2005: 19-42.

【4】Liu Dong, Tao Zongming, Wu Decheng,et al. Development of three-wavelength-Raman-polarization lidar system and case study[J]. Acta Optica Sinica, 2013, 33(2): 0228001(in Chinese).
刘 东, 陶宗明, 吴德成, 等. 三波长拉曼偏振激光雷达系统研制及探测个例[J]. 光学学报, 2013, 33(2): 0228001.

【5】Chi Ruli, Liu Houtong, Wang Zhenzhu,et al. Observations of cirrus clouds using polarization Mie lidar[J]. High Power Laser and Particle Beam, 2009, 21(9): 1295-1300(in Chinese).
迟如利, 刘厚通, 王珍珠, 等. 偏振-米散射激光雷达对卷云的探测[J]. 强激光与粒子束, 2009, 21(9): 1295-1300.

【6】Cai Jia, Gao Jun, Fan Zhiguo,et al. The polarization characteristic research of aerosol particles under the humidity influence[J]. Chinese Journal of Luminescence, 2013, 34(5): 639-644(in Chinese).
蔡 嘉, 高 隽, 范之国, 等. 湿度影响下的气溶胶粒子的偏振特性[J]. 发光学报, 2013, 34(5): 639-644.

【7】Zhu Aichun, Liu Zhishen, Li Zhigang,et al. Research and experiments of polarization lidar system[J]. Microcomputer Information, 2008, 24(4-1): 49-51(in Chinese).
朱爱春, 刘智深, 李志刚, 等. 偏振激光雷达系统研制及实验测量[J]. 微计算机信息, 2008, 24(4-1): 49-51.

【8】Yang Zijian.Study on Construction of Biological Aerosol Monitoring System Based on Lidar Technology and the Key Technology[D]. Beijing: Doctorial Dissertation of Military Medical Science Academy of the PLA, 2015(in Chinese).
杨子健. 基于激光雷达技术的生物气溶胶监测系统构建与关键技术研究[D]. 北京: 中国人民解放军军事医学科学院博士论文, 2015.

【9】Schotland R M, Sassen K, Stone R. Observation by lidar of linear depolarization ratios for hydrometeors[J].J. Appl. Meteorol., 1971, 10(5): 1011-1017.

【10】Gimmestad G G. Reexamination of depolarization in lidar measurements[J].Appl. Opt., 2008, 47(21): 3795-3802.

【11】Evans B T N, Yee E, Roy G,et al. Remote detection and mapping of bioaerosols[J]. J. Aerosol Sci., 1994, 25(8): 1549-1566.

【12】Carrig T J, Grund C, Marquardt J. Wavelength normalized depolarization ratio lidar[P]. U.S. Patent No. 7, 2008, 339, 670 B2.

【13】Glennon J J, Nichols T, Gatt P,et al. System performance modeling of a bioaerosol detection lidar sensor utilizing polarization diversity[C]. Proc. SPIE, 2009, 7323: 73230T.

【14】Snow J W, Bicknell W E, Burke H K. Polarimetric bio-aerosol detection: numerical simulation[C].Proc. SPIE, 2005, 5995: 59950Z.

【15】Schotland R M, Sasse K, Stone R. Observation by lidar of linear depolarization ratios for hydrometeors[J].J. Appl. Meteorol., 1971, 10(5): 1011-1017.

【16】Thrush E, Brown D M, Salciccioli N,et al. Optical properties and cross-sections of biological aerosols[C]. Proc. SPIE, 2010, 7665(3): 766507.

【17】Quinby-Hunt M S, Erskine L L, Hunt A J. Polarized light scattering by aerosols in the marine atmospheric boundary layer[J].Appl. Opt., 1997, 3(21): 5168-5184.

【18】Murayama T, Furushima M, Oda A,et al. Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo[J]. J. Meteorol. Soc. Jpn., 1996, 74(4): 571-578.

引用该论文

YANG Hui,ZHAO Xuesong,SUN Yanfei,WANG Tiedong,ZONG Junjun,QING Feng. Bioaerosols Polarization Measurement by Short-Range Multi-Wavelength Lidar[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(1): 52-58

杨辉,赵雪松,孙彦飞,王铁栋,宗军君,庆丰. 利用近场多波长激光雷达对生物气溶胶的偏振测量[J]. 大气与环境光学学报, 2018, 13(1): 52-58

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF