首页 > 论文 > Photonics Research > 6卷 > 2期(pp:77-83)

Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Natural surface-enhanced Raman spectroscopy (SERS) chips based on plants or insects have gained increased attention due to their facile characteristics and low costs. However, such chips remain a major challenge for practical application because of poor reproducibility and stability as well as unavoidable damage to the surface structure during coating metal and uncontrolled dehydration. By using a simple wrinkling method, we develop a new route to fabricate a low-cost bionic SERS chip for practical detection. Inspired by the taro leaf, we fabricate a SERS chip with a super-hydrophobic and plasmonic micro/nano dual structure, and its structure parameters can be optimized. Compared with the natural taro-leaf SERS chip, our artificial chip exhibits Raman signals with an order of magnitude higher sensitivity (~10?9 M) and enhancement factor (~107) under the illumination of weak laser radiation, demonstrating that our SERS chip has great potential in biological detection. The excellent performances of our bionic SERS chip are attributed to a synergy of optimized micro-wrinkle and nano-nest, which is verified by experiment and simulation. We believe our bionic chip could be a promising candidate in practical application due to its merits such as simple fabricating process, optimizable structure, low cost, excellent homogeneity, high sensitivity, and stability.

投稿润色
补充资料

DOI:10.1364/prj.6.000077

基金项目:National Key Research and Development Program of China (2016YFA0200403); CAS Strategy Pilot Program (XDA 09020300); Eu-FP7 Project (247644); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (10974037, 61505038).

收稿日期:2017-09-12

录用日期:2017-11-15

网络出版日期:2017-12-05

作者单位    点击查看

Fengyou Yang:CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Haoran Zhang:CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Huimin Feng:CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Jianjie Dong:CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Chuang Wang:CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Qian Liu:CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, ChinaMOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute, School of Physics, Nankai University, Tianjin 300457, China

联系人作者:Qian Liu(liuq@nanoctr.cn)

【1】S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, and W. F. Su, “Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering,” Anal. Chem. 87 , 6017–6024 (2015).

【2】S. Gwo, C. Y. Wang, H. Y. Chen, M. H. Lin, L. Sun, X. Li, W. L. Chen, Y. M. Chang, and H. Ahn, “Plasmonic metasurfaces for nonlinear optics and quantitative SERS,” ACS Photon. 3 , 1371–1384 (2016).

【3】J. Chen, G. Qin, W. Shen, Y. Li, and B. Das, “Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals,” J. Mater. Chem. C 3 , 1309–1318 (2015).

【4】L. A. Lane, X. Qian, and S. Nie, “SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging,” Chem. Rev. 115 , 10489–10529 (2015).

【5】H. Y. Hsueh, H. Y. Chen, Y. C. Ling, W. S. Huang, Y. C. Hung, S. Gwo, and R. M. Ho, “A polymer-based SERS-active substrate with gyroid-structured gold multibranches,” J. Mater. Chem. C 2 , 4667–4675 (2014).

【6】X. X. Han, W. Ji, B. Zhao, and Y. Ozaki, “Semiconductor-enhanced Raman scattering: active nanomaterials and applications,” Nanoscale 9 , 4847–4861 (2017).

【7】K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78 , 1667–1670 (1997).

【8】H. Tang, G. Meng, Z. Li, C. Zhu, Z. Huang, Z. Wang, and F. Li, “Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates,” Nano Res. 8 , 2261–2270 (2015).

【9】C. Zhu, G. Meng, Q. Huang, X. Wang, Y. Qian, X. Hu, H. Tang, and N. Wu, “ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates,” Nano Res. 8 , 957–966 (2015).

【10】W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7 , 15487–15494 (2015).

【11】J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464 , 392–395 (2010).

【12】Y. S. Yamamoto, K. Hasegawa, Y. Hasegawa, N. Takahashi, Y. Kitahama, S. Fukuoka, N. Murase, Y. Baba, Y. Ozaki, and T. Itoh, “Direct conversion of silver complexes to nanoscale hexagonal columns on a copper alloy for plasmonic applications,” Phys. Chem. Chem. Phys. 15 , 14611–14615 (2013).

【13】B.-B. Xu, Y.-L. Zhang, W.-Y. Zhang, X.-Q. Liu, J.-N. Wang, X.-L. Zhang, D.-D. Zhang, H.-B. Jiang, R. Zhang, and H.-B. Sun, “Silver-coated rose petal: green, facile, low-cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency,” Adv. Opt. Mater. 1 , 56–60 (2013).

【14】L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27 , 1706–1711 (2015).

【15】Z. Mu, X. Zhao, Z. Xie, Y. Zhao, Q. Zhong, L. Bo, and Z. Gu, “In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS),” J. Mater. Chem. B 1 , 1607–1613 (2013).

【16】J. A. Huang, Y. L. Zhang, Y. Zhao, X. L. Zhang, M. L. Sun, and W. Zhang, “Superhydrophobic SERS chip based on a Ag coated natural taro-leaf,” Nanoscale 8 , 11487–11493 (2016).

【17】C. T. Chapman, J. T. Paci, W. K. Lee, C. J. Engel, T. W. Odom, and G. C. Schatz, “Interfacial effects on nanoscale wrinkling in gold-covered polystyrene,” ACS Appl. Mater. Interface 8 , 24339–24344 (2016).

【18】X. Yang, Y. Zhao, J. Xie, X. Han, J. Wang, C. Zong, H. Ji, J. Zhao, S. Jiang, Y. Cao, and C. Lu, “Bioinspired fabrication of free-standing conducting films with hierarchical surface wrinkling patterns,” ACS Nano 10 , 3801–3808 (2016).

【19】W. K. Lee, J. Kang, K. S. Chen, C. J. Engel, W. B. Jung, D. Rhee, M. C. Hersam, and T. W. Odom, “Multiscale, hierarchical patterning of graphene by conformal wrinkling,” Nano Lett. 16 , 7121–7127 (2016).

【20】C. F. Guo, S. Cao, J. Zhang, H. Tang, S. Guo, Y. Tian, and Q. Liu, “Topotactic transformations of superstructures: from thin films to two-dimensional networks to nested two-dimensional networks,” J. Am. Chem. Soc. 133 , 8211–8215 (2011).

【21】Y. Tian, C. F. Guo, S. Guo, T. Yu, and Q. Liu, “Bivariate-continuous-tunable interface memristor based on Bi2S3 nested nano-networks,” Nano Res. 7 , 953–962 (2014).

【22】C. F. Guo, J. Zhang, M. Wang, Y. Tian, and Q. Liu, “A strategy to prepare wafer scale bismuth compound superstructures,” Small 9 , 2394–2398 (2013).

【23】E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

【24】W. K. Lee, W. B. Jung, S. R. Nagel, and T. W. Odom, “Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles,” Nano Lett. 16 , 3774–3779 (2016).

【25】R. Wang, and S. Bai, “Wettability of laser micro-circle-dimpled SiC surfaces,” Appl. Surf. Sci. 346 , 107–110 (2015).

【26】D. Murakami, H. Jinnai, and A. Takahara, “Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces,” Langmuir 30 , 2061–2067 (2014).

【27】T. Itoh, Y. S. Yamamoto, Y. Kitahama, and J. Balachandran, “One-dimensional plasmonic hotspots located between silver nanowire dimers evaluated by surface-enhanced resonance Raman scattering,” Phys. Rev. B 95 , 115441 (2017).

【28】H. Xu, J. Aizpurua, M. K?ll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62 , 4318–4324 (2000).

【29】C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5 , 1569–1574 (2005).

【30】W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7 , 11495 (2016).

引用该论文

Fengyou Yang, Haoran Zhang, Huimin Feng, Jianjie Dong, Chuang Wang, and Qian Liu, "Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure," Photonics Research 6(2), 77-83 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF