首页 > 论文 > Photonics Research > 6卷 > 2期(pp:99-108)

Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attracted great attention for integrated on-chip trapping and manipulation. However, optical trapping with high efficiency and low input power is still a big challenge in nanobeam cavities because most of the light energy is confined within the solid dielectric region. To this end, by incorporating a nanoslotted structure into an ultracompact one-dimensional photonic crystal nanobeam cavity structure, we design a promising on-chip device with ultralarge trapping potential depth to enhance the optical trapping characteristic of the cavity. In this work, we first provide a systematic analysis of the optical trapping force for an airborne polystyrene (PS) nanoparticle trapped in a cavity model. Then, to validate the theoretical analysis, the numerical simulation proof is demonstrated in detail by using the three-dimensional finite element method. For trapping a PS nanoparticle of 10 nm radius within the air-slot, a maximum trapping force as high as 8.28 nN/mW and a depth of trapping potential as large as 1.15×105 kBT?mW?1 are obtained, where kB is the Boltzmann constant and T is the system temperature. We estimate a lateral trapping stiffness of 167.17 pN·nm?1·?mW?1 for a 10 nm radius PS nanoparticle along the cavity x-axis, more than two orders of magnitude higher than previously demonstrated on-chip, near field traps. Moreover, the threshold power for stable trapping as low as 0.087 μW is achieved. In addition, trapping of a single 25 nm radius PS nanoparticle causes a 0.6 nm redshift in peak wavelength. Thus, the proposed cavity device can be used to detect single nanoparticle trapping by monitoring the resonant peak wavelength shift. We believe that the architecture with features of an ultracompact footprint, high integrability with optical waveguides/circuits, and efficient trapping demonstrated here will provide a promising candidate for developing a lab-on-a-chip device with versatile functionalities.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000099

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61501053, 61611540346, 11474011, 11654003, 61435001, 61471050, 61622103); National Key R&D Program of China (2016YFA0301302); Fund of the State Key Laboratory of Information Photonics and Optical Communications (IPOC2017ZT05), Beijing University of Posts and Telecommunications10.13039/501100002766, China.

收稿日期:2017-09-04

录用日期:2017-12-02

网络出版日期:2017-12-06

作者单位    点击查看

Daquan Yang:School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, ChinaState Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Fei Gao:State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Qi-Tao Cao:State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Chuan Wang:State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Yuefeng Ji:School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, ChinaState Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Yun-Feng Xiao:State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Beijing 100871, ChinaCollaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

联系人作者:Yun-Feng Xiao(yfxiao@pku.edu.cn)

【1】D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11 , 995–1009 (2011).

【2】D. G. Grier, “A revolution in optical manipulation,” Nature 424 , 810–816 (2003).

【3】A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11 , 288–290 (1986).

【4】A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2 , 365–370 (2008).

【5】A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6 , 841–856 (2000).

【6】A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24 , 156–159 (1970).

【7】K. C. Neuman, and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75 , 2787–2809 (2004).

【8】A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330 , 769–771 (1987).

【9】P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404 , 365–368 (2000).

【10】L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15 , 4713–4719 (2015).

【11】E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18 , 1763–1770 (2012).

【12】M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13 , 10449–10481 (2013).

【13】J. Huang, X. Liu, Y. Zhang, and B. Li, “Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes,” Photon. Res. 3 , 308–312 (2015).

【14】F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86 , 033107 (2015).

【15】D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108 , 221103 (2016).

【16】M. D. Baaske, and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10 , 733–739 (2016).

【17】Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29 , 1604920 (2017).

【18】B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111 , 14657–14662 (2014).

【19】L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25 , 5616–5620 (2013).

【20】J. Zhu, Y. Zhong, and H. Liu, “Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities,” Photon. Res. 5 , 396–405 (2017).

【21】M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5 , 349–356 (2011).

【22】K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2 , 469–475 (2011).

【23】J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11 , 53–59 (2016).

【24】Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photon. Res. 5 , 436–440 (2017).

【25】B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15 , 14322–14334 (2007).

【26】T. H. Stievater, D. A. Kozak, M. W. Pruessner, R. Mahon, D. Park, W. S. Rabinovich, and F. K. Fatemi, “Modal characterization of nanophotonic waveguides for atom trapping,” Opt. Mater. Express 6 , 3826–3837 (2016).

【27】A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457 , 71–75 (2009).

【28】A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9 , 1182–1188 (2009).

【29】S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10 , 2408–2411 (2010).

【30】P. T. Lin, and P. T. Lee, “All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide,” Opt. Lett. 36 , 424–426 (2011).

【31】M. G. Scullion, Y. Arita, T. F. Krauss, and K. Dholakia, “Enhancement of optical forces using slow light in a photonic crystal waveguide,” Optica 2 , 816–821 (2015).

【32】N. D. Gupta, and V. Janyani, “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface,” IEEE J. Sel. Top. Quantum Electron. 53 , 4800109 (2017).

【33】M. Barth, and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89 , 253114 (2006).

【34】A. Rahmani, and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14 , 6353–6358 (2006).

【35】T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1 , 49–52 (2007).

【36】C. A. Mejia, N. Huang, and M. L. Povinelli, “Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities,” Opt. Lett. 37 , 3690–3692 (2012).

【37】N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110 , 123601 (2013).

【38】A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7 , 545–549 (2017).

【39】M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109 , 241107 (2016).

【40】P. T. Lin, T. W. Lu, and P. T. Lee, “Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles,” Opt. Express 22 , 6791–6800 (2014).

【41】X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21 , 305202 (2010).

【42】S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10 , 99–104 (2010).

【43】D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9 , 4900412 (2017).

【44】Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12 , 1633–1637 (2012).

【45】S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13 , 559–563 (2013).

【46】C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3 , 2290 (2013).

【47】C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6 , 0600916 (2014).

【48】H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108 , 171102 (2016).

【49】S. Han, and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24 , 452–458 (2016).

【50】F. Liang, and Q. Quan, “Detecting single gold nanoparticles (1.8?nm) with ultrahigh-q air mode photonic crystal nanobeam cavities,” ACS Photon. 2 , 1692–1697 (2015).

【51】J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95 , 143901 (2005).

【52】COMSOL Inc., https://www.comsol.com/.

【53】J. Ma, L. J. Martinez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20 , 6816–6824 (2012).

【54】J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light , 2nd ed. (Princeton University, 2008).

【55】D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105 , 063118 (2014).

【56】D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54 , 1–5 (2015).

【57】C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences , 3rd ed. (Springer, 2004).

引用该论文

Daquan Yang, Fei Gao, Qi-Tao Cao, Chuan Wang, Yuefeng Ji, and Yun-Feng Xiao, "Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities," Photonics Research 6(2), 99-108 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF