首页 > 论文 > Photonics Research > 6卷 > 2期(pp:132-137)

Sharp tunable and additional noise-free optical filter based on Brillouin losses

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In this paper, we propose an additional noise-free, independent center frequency and bandwidth tunable optical filter based on stimulated Brillouin scattering (SBS) losses. By suppressing the out-of-band signal with two broadened symmetric SBS losses, tunable pass bandwidths from 500 MHz to 9.5 GHz and the independent center frequency tunability are demonstrated. Considering the limited SBS interaction in the center frequency range, a flat-top response with minimum 0.3 dB ripple is achieved. Assisted by the extra suppression from polarization pulling, a maximum selectivity of 20 dB and an ultrahigh 250 dB/GHz roll-off are reached. A gain-based SBS filter adds noise to the filtered signal. However, for our proposed filter setup, no additional noise is detected due to the transparency in the passband. Considering the wide independent bandwidth and center frequency tunability, flat-top response, and low-noise characteristic, our proposed filter can be perfectly used as a supplement of most commercialized conventional tunable optical single bandpass filters, whose minimum bandwidth is limited by 10 GHz.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000132

基金项目:Deutsche Forschungsgemeinschaft (DFG)10.13039/501100001659 (DFG SCHN 716/13-1).

收稿日期:2017-11-03

录用日期:2017-12-18

网络出版日期:2017-12-20

作者单位    点击查看

Cheng Feng:Institut für Hochfrequenztechnik, Technische Universit?t Braunschweig, 38106 Braunschweig, Germany
Stefan Preussler:Institut für Hochfrequenztechnik, Technische Universit?t Braunschweig, 38106 Braunschweig, Germany
Thomas Schneider:Institut für Hochfrequenztechnik, Technische Universit?t Braunschweig, 38106 Braunschweig, Germany

联系人作者:Cheng Feng(cheng.feng@ihf.tu-bs.de)

【1】J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24 , 201–229 (2006).

【2】D. Sadot, and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36 , 50–55 (1998).

【3】J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23 , 702–723 (2005).

【4】N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056 , 50–64 (2000).

【5】S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4??MHz,” Opt. Express 19 , 8565–8570 (2011).

【6】S. Preussler, and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55 , 031110 (2016).

【7】A. Wiatrek, S. Preussler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering,” Opt. Lett. 37 , 930–932 (2012).

【8】W. Zhang, and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24 , 1182–1184 (2012).

【9】W. Zhang, and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23 , 1775–1777 (2011).

【10】R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 24 , 1097–1099 (2012).

【11】Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference , Technical Digest (CD) (Optical Society of America, 2006), paper?PDP1.

【12】A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25 , 2168–2174 (2007).

【13】T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27 , 1552–1554 (2002).

【14】W. Wei, L. Yi, Y. Jaou?n, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22 , 23249–23260 (2014).

【15】L. Yi, W. Wei, Y. Jaou?n, M. Shi, B. Han, M. Morvan, and W. Hu, “Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering,” J. Lightwave Technol. 34 , 669–675 (2016).

【16】A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19 , 21945–21955 (2011).

【17】Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photon. Res. 2 , B18–B25 (2014).

【18】W. Wei, L. Yi, Y. Jaou?n, M. Morvan, and W. Hu, “Brillouin rectangular optical filter with improved selectivity and noise performance,” IEEE Photon. Technol. Lett. 27 , 1593–1596 (2015).

【19】C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, and D. Liu, “Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement,” Opt. Express 25 , 20969–20982 (2017).

【20】W. Wei, L. Yi, Y. Jaou?n, and W. Hu, “Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump,” Opt. Lett. 42 , 4083–4086 (2017).

【21】M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26 , 35–44 (1994).

【22】M. Choi, I. C. Mayorga, S. Preussler, and T. Schneider, “Investigation of gain dependent relative intensity noise in fiber Brillouin amplification,” J. Lightwave Technol. 34 , 3930–3936 (2016).

【23】A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16 , 21692–21707 (2008).

【24】A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 2 , 1–59 (2010).

【25】W. Wei, L. Yi, Y. Jaou?n, M. Morvan, and W. Hu, “Ultra-selective flexible add and drop multiplexer using rectangular optical filters based on stimulated Brillouin scattering,” Opt. Express 23 , 19010–19021 (2015).

【26】M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4 , 2898 (2013).

【27】R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. 3 , 1180–1192 (1985).

【28】K. Y. Song, and K. Hotate, “25??GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32 , 217–219 (2007).

【29】A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, and S. Madden, “On-chip EIT-like RF photonic signal processor,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2016), pp.?317–320.

【30】E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8 , 15819 (2017).

【31】E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10 , 463–467 (2016).

【32】R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19 , 8285–8290 (2011).

引用该论文

Cheng Feng, Stefan Preussler, and Thomas Schneider, "Sharp tunable and additional noise-free optical filter based on Brillouin losses," Photonics Research 6(2), 132-137 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF