首页 > 论文 > 中国激光 > 45卷 > 3期(pp:307014--1)

基于压缩感知的高密度分子定位算法比较

Comparison of Algorithms of High-Density Molecule Localization Based on Compressed Sensing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高荧光超分辨显微技术的时间分辨率,提出了各种高密度荧光分子定位算法。对基于压缩感知模型的凸优化(CVX)工具箱的内点算法、同伦算法以及正交匹配追踪(OMP)算法的重构密度、定位精度、定位时间进行比较。模拟结果表明,CVX方法和同伦算法能够在高密度情况下实现精确定位,OMP算法与同伦算法运行时间比CVX算法短,但OMP算法在高密度的情况下定位精度相对其他2种算法明显下降。实验结果表明,3种算法都能实现高密度的荧光分子定位,CVX方法和同伦算法具有较好的重构效果;在500幅图像重构中,同伦算法与OMP算法的速度相比于CVX算法分别提高了14.9倍和21.2倍,大幅度缩短了重构时间。

Abstract

In order to improve the time resolution of super-resolution fluorescent microscopy, the methods of high-density molecule localization have been proposed. Three algorithms based on compressed sensing models, including the interior-point method in the CVX toolbox, the homotopy method, and the orthogonal matching pursuit (OMP) algorithm, are investigated. We compare the identified density, localization precision, and execution time by using these algorithms in the simulations and experiments. Simulation results show that the CVX and homotopy methods can accurately locate in the high molecule density, but the CVX method has the longest running time among these methods. The OMP method has low localization precision in the high density. The experimental results show that these algorithms can realize the localization of high molecule density. The CVX and homotopy methods get better results than OMP method in the localization precision. For the localization of 500 images, the homotopy and OMP methods are 14.9-fold and 21.2-fold faster than CVX method, which can greatly shorten the reconstruction time.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/cjl201845.0307014

所属栏目:“生物医学光子学新技术及进展”专题

基金项目:国家973计划(2015CB352005,2012CB825802)、国家自然科学基金(61335001,61178080,61235012,11004136)、国家重大科学仪器设备开发专项 (2012YQ15009203)、广东省自然科学基金(2014A030312008)、深圳市科技计划项目(JCYJ20150324141711698)、国家留学基金

收稿日期:2017-08-07

修改稿日期:2017-09-14

网络出版日期:--

作者单位    点击查看

张赛文:深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060深圳大学光电工程学院, 广东 深圳 518060深圳生物医学工程重点实验室, 广东 深圳 518060
于斌:深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060深圳大学光电工程学院, 广东 深圳 518060深圳生物医学工程重点实验室, 广东 深圳 518060
陈丹妮:深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060深圳大学光电工程学院, 广东 深圳 518060深圳生物医学工程重点实验室, 广东 深圳 518060
吴晶晶:深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060深圳大学光电工程学院, 广东 深圳 518060深圳生物医学工程重点实验室, 广东 深圳 518060
李四维:深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060深圳大学光电工程学院, 广东 深圳 518060深圳生物医学工程重点实验室, 广东 深圳 518060
屈军乐:深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060深圳大学光电工程学院, 广东 深圳 518060深圳生物医学工程重点实验室, 广东 深圳 518060

联系人作者:于斌(yubin@szu.edu.cn)

备注:张赛文(1988-),男,博士研究生,主要从事生物医学光子学和压缩感知方面的研究。E-mail: zhangsaiwen2012@163.com

【1】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

【2】Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of National Academy Sciences of the United States of America, 2005, 102(37): 13081-13086.

【3】Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature Methods, 2006, 3(10): 793-796.

【4】Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272.

【5】Thompson R E, Larson D R , Webb W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 2002, 82(5): 2775-2783.

【6】Aguet F, van de Ville D, Unser M. A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles[J]. Optics Express, 2005, 13(26): 10503-10522.

【7】Yu B, Chen D N, Liu L, et al. Fast Fourier-domain localization algorithm of single molecule with nanometer resolution for super-resolution fluorescence imaging[J]. Acta Optica Sinica, 2012, 32(2): 0218001.
于斌, 陈丹妮, 刘磊, 等. 荧光单分子的频率域纳米级快速定位算法及其在超分辨荧光成像中的应用[J]. 光学学报, 2012, 32(2): 0218001.

【8】Yu B, Chen D N, Qu J L, et al. Fast Fourier domain localization algorithm of a single molecule with nanometer precision[J]. Optics Letters, 2011, 36(22): 4317-4319.

【9】Holden S J, Uphoff S,Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J]. Nature Methods, 2011, 8(4): 279-280.

【10】Quan T W, Zhu H Y, Liu X M, et al. High-density localization of active molecules using structured sparse model and bayesian information criterion[J]. Optics Express, 2011, 19(18): 16963-16974.

【11】Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing[J]. Nature Methods, 2012, 9(7): 721-723.

【12】Babcock H P, Moffitt J R, Cao Y L, et al. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy[J]. Optics Express, 2013, 21(23): 28583-28596.

【13】Cheng T, Chen D N, Yu B, et al. Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation[J]. Biomedical Optics Express, 2017, 8(5): 2445-2457.

【14】Zhang S W, Chen D N, Niu H B. 3D localization of high particle density images using sparse recovery[J]. Applied Optics, 2015, 54(26): 7859-7864.

【15】Du Y J, Zhang H,Zhao M Y, et al. Faster super-resolution imaging of high density molecules via a cascading algorithm based on compressed sensing[J]. Optics Express, 2015, 23(14): 18563-18576.

【16】Gu L S, Sheng Y, Chen Y, et al. High-density 3D single molecular analysis based on compressed sensing[J]. Biophysical Journal, 2014, 106(11): 2443-2449.

【17】Huang J Q, Gumpper K, Chi Y J, et al. Fast two-dimensional super-resolution image reconstruction algorithm for ultra-high emitter density[J]. Optics Letters, 2015, 40(13): 2989-2992.

【18】Daubechies I, Fornasier M, Loris I. Accelerated projected gradient method for linear inverse problems with sparsity constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 764-792.

【19】Figueiredo M A, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.

【20】Parikh N, Boyd S. Proximal algorithms[M]. Boston: Now Publishers, 2014, 1(3): 127-239.

【21】Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.

【22】Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.

【23】Donoho D L, Tsaig Y. Fast solution of L1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812.

【24】Cai T T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4680-4688.

【25】Hugelier S, de Rooi J J, Bernex R, et al. Sparse deconvolution of high-density super-resolution images[J]. Scientific Reports, 2016, 6: 21413.

【26】http://bigwww.epfl.ch/smlm/.

引用该论文

Zhang Saiwen,Yu Bin,Chen Danni,Wu Jingjing,Li Siwei,Qu Junle. Comparison of Algorithms of High-Density Molecule Localization Based on Compressed Sensing[J]. Chinese Journal of Lasers, 2018, 45(3): 0307014

张赛文,于斌,陈丹妮,吴晶晶,李四维,屈军乐. 基于压缩感知的高密度分子定位算法比较[J]. 中国激光, 2018, 45(3): 0307014

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF