首页 > 论文 > 中国激光 > 45卷 > 3期(pp:314001--1)

基于各向异性超表面的太赫兹宽带偏振转换器

Terahertz Broadband Polarization Converter Based on Anisotropic Metasurface

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于各向异性超表面的太赫兹宽带偏振转换器,该器件由金属-电介质-金属三层构成,位于顶层的是沿对角线相交的正方形谐振腔,底层为金属板,中间被介质层隔开。通过仿真计算该结构在所研究频率范围内的反射比和偏振转换率,结果表明该偏振转换器可以在0.4~1.04 THz频率范围内将线偏振的太赫兹波偏振方向旋转90°,转换率达90%以上。同时, 在偏振转换率高的频率下对该结构表面电流分布进行仿真,分析了高偏振转换率的机理。该偏振转换器与以前的设计相比不但结构简单,而且工作带宽较宽,在太赫兹波的偏振调制方面具有潜在的应用价值。

Abstract

A terahertz broadband polarization converter based on anisotropic metasurface is proposed, which is composed of metal-dielectric-metal three layers. The top layer is a square-shaped resonator intersecting along a diagonal line. The bottom layer is the metal plate. The top and bottom layers are separated by a dielectric layer. The reflection ratio and polarization conversion rate of the structure in the studied frequency range are calculated by simulation. The results show that the polarization converter can rotate the polarization direction of the linearly polarized terahertz wave 90° in the frequency range of 0.4-1.04 THz, and the conversion rate is more than 90%. Meanwhile, the distribution of the surface current of the structure is simulated at the frequency with high polarization conversion rate, and the mechanism of high polarization conversion rate is analyzed. Compared with the previous design, the polarization converter has a simple structure and a broad operation bandwidth, and has a potential application value in the field of terahertz polarization modulation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201845.0314001

所属栏目:太赫兹技术

基金项目:国家自然科学基金(61575130,61575131,50971094)、北京市自然科学基金和北京市教育委员会科技计划重点项目(KZ201310028032)

收稿日期:2017-09-18

修改稿日期:2017-10-25

网络出版日期:--

作者单位    点击查看

李永花:首都师范大学物理系, 太赫兹光电子学教育部重点实验室, 北京 100048
周璐:首都师范大学物理系, 太赫兹光电子学教育部重点实验室, 北京 100048
赵国忠:首都师范大学物理系, 太赫兹光电子学教育部重点实验室, 北京 100048

联系人作者:赵国忠(guozhong-zhao@126.com)

备注:李永花(1988—),女,硕士研究生,主要从事太赫兹波段光子功能材料和器件机理方面的研究。E-mail: 1909577101@qq.com

【1】Beard M C, Turner G M, Schmuttenmaer C A. Terahertz spectroscopy[J]. Journal of Physical Chemistry B, 2002, 106(29): 7146-7159.

【2】Vieweg N, Fischer B M, Reuter M, et al. Ultrabroadband terahertz spectroscopy of a liquid crystal[J]. Optics Express, 2012, 20(27): 28249-28256.

【3】Janek M, Zich D, Naftaly M. Terahertz time-domain spectroscopy response of amines and amino acids intercalated smectites in far-infrared region[J]. Materials Chemistry & Physics, 2014, 145(3): 278-287.

【4】Qin J Y, Xie L Y, Ying Y B. A high-sensitivity terahertz spectroscopy technology for tetracycline hydrochloride detection using metamaterials[J]. Food Chemistry, 2016, 211: 300-305.

【5】Hu B B, Nuss M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716-1718.

【6】Mittleman D, Gupta M, Neelamani R, et al. Recent advances in terahertz imaging[J]. Applied Physics B, 1999, 68(6): 1085-1094.

【7】Khler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885): 156-159.

【8】Zhang Z W, Zhao Y M, Li C Y, et al. Non-destructive detection of pigments in oil painting by using terahertz tomography[J]. Science China, 2015, 58(12): 124202-124203.

【9】Heljo V P, Nordberg A, Tenho M, et al. The effect of water plasticization on the molecular mobility and crystallization tendency of amorphous disaccharides[J]. Pharmaceutical Research, 2012, 29(10): 2684-2697.

【10】Huang Z, Park H, Parrott E P J, et al. Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach[J]. IEEE Photonics Technology Letters, 2013, 25(1): 81-84.

【11】Han Y, Li G. Coherent optical communication using polarization multiple-input-multiple-output[J]. Optics Express, 2005, 13(19): 7527-7534.

【12】Liu Y, Zhao G Z, Shen Y C. Polarization imaging detection based on the continuous terahertz wave[J]. Chinese Journal of Lasers, 2016, 43(1): 0111001.
刘影, 赵国忠, 申彦春. 连续太赫兹波偏振成像检测[J]. 中国激光, 2016, 43(1): 0111001.

【13】Stevenson T, Benford D, Bennett C, et al. Cosmic microwave background polarization detector with high efficiency, broad bandwidth, and highly symmetric coupling to transition edge sensor bolometers[J]. Journal of Low Temperature Physics, 2008, 151(1-2): 471-476.

【14】Grischkowsky D, Keiding S. THz time-domain spectroscopy of high Tc substrates[J]. Applied Physics Letters, 1990, 57(10): 1055-1057.

【15】Nose T, Sato S, Mizuno K, et al. Refractive index of nematic liquid crystals in the submillimeter wave region[J]. Applied Optics, 1997, 36(25): 6383-6387.

【16】Chen C Y, Tsai T R, Pan C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals[J]. Applied Physics Letters, 2003, 83(22): 4497-4499.

【17】Masson J B, Gallot G. Terahertz achromatic quarter-wave plate[J]. Optics Letters, 2006, 31(2): 265-267.

【18】Tang J Y, Xiao Z Y, Xu K K. Cross polarization conversion based on a new chiral spiral slot structure in THz region[J]. Optical & Quantum Electronics, 2016, 48(2): 1-11.

【19】Huang X, Xiao B, Guo L, et al. Triple-band linear and circular reflective polarizer based on E-shaped metamaterial[J]. Journal of Optics, 2014, 16(12): 125101.

【20】Li H, Xiao B X, Huang X, et al. Multiple-band reflective polarization converter based on deformed F-shaped metamaterial[J]. Physica Scripta, 2015, 90(3): 35806-35811.

【21】Huang X J, Yang D, Yang H L. Multiple-band reflective polarization converter using U-shaped metamaterial[J]. Applied Physics, 2014, 115 (10): 2494-2499.

【22】Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307.

【23】Li M, Lan F, Yang Z, et al. Broadband and highly efficient sub-THz reflective polarization converter based on Z-shaped metasurface[C]. International Conference on Mechatronics, 2016, 83: 427-432.

【24】Jing X, Zhu H, Wang W, et al. Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region[J]. Optics Communications, 2017, 383: 310-315.

【25】Cheng Y, Gong R, Wu L. Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves[J]. Plasmonics, 2017, 12(4): 1113-1120.

【26】Fu Y N, Zhang X Q, Zhao G Z, et al. A broadband polarization converter based on resonant ring in terahertz region[J]. Acta Physica Sinica, 2017, 66(18): 18701.
付亚男, 张新群, 赵国忠, 等. 基于谐振环的太赫兹宽带偏振转换器件研究[J]. 物理学报, 2017, 66(18): 18701.

引用该论文

Li Yonghua,Zhou Lu,Zhao Guozhong. Terahertz Broadband Polarization Converter Based on Anisotropic Metasurface[J]. Chinese Journal of Lasers, 2018, 45(3): 0314001

李永花,周璐,赵国忠. 基于各向异性超表面的太赫兹宽带偏振转换器[J]. 中国激光, 2018, 45(3): 0314001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF