首页 > 论文 > 中国激光 > 45卷 > 3期(pp:306003--1)

水下散射信道信号到达角度分布研究

Distribution of Arriving Angle of Signal in Underwater Scattering Channel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于多次散射模型,设计了基于蒙特卡罗仿真模型的LED传输系统,研究了不同水体环境下接收信号到达角度和接收机视场角对接收信号功率和接收信噪比的影响。在纯水和纯净大洋水环境下,接收信号功率集中分布在0°~3°,较小的接收机视场角(1°)可以获得最大信噪比。在港口水和沿海水环境下,信号功率的分布显著扩展,特别是港口水环境下扩展到0°~90°。在沿海水环境下,当接收机视场角为8°,可以获得最大信噪比;在港口水环境下,接收视场角增大到30°,可以获得最大信噪比。

Abstract

Based on multi-scattering model,we design an LED transmission system based Monte-Carol simulation model, and study the influence of arriving angle of the received signal and field of view (FOV) of the receiver on the received signal power and the received signal-to-noise ratio (SNR) under different water environments. Under pure water and clear ocean water environments, the received power is mainly distributed at the arriving angle range of 0°-3°, and when the receiver with small FOV (1°), the maximum received SNR can be achieved. While under harbor and coastal water environments, the received power distribution obviously spread, especially for harbor water, the distribution expands from 0° to 90°. Under coastal water environment, when the receiver FOV is set at 8°, the maximum SNR is achieved. Under harbor water environment, when the receiver FOV increases to 30°, the maximum SNR is achieved.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/cjl201845.0306003

所属栏目:光纤光学与光通信

基金项目:国家重点研发计划(2017YFB0403403)

收稿日期:2017-08-29

修改稿日期:2017-10-17

网络出版日期:--

作者单位    点击查看

刘涛:清华信息科学与技术国家实验室, 清华大学电子工程系, 北京 100084
张洪明:清华信息科学与技术国家实验室, 清华大学电子工程系, 北京 100084深圳市数字电视系统重点实验室(广东省数字电视系统重点实验室), 深圳清华大学研究院, 广东 深圳 518057
宋健:清华信息科学与技术国家实验室, 清华大学电子工程系, 北京 100084深圳市数字电视系统重点实验室(广东省数字电视系统重点实验室), 深圳清华大学研究院, 广东 深圳 518057

联系人作者:张洪明(zhhm@tsinghua.edu.cn)

备注:刘涛(1983—),男,博士研究生,主要从事水下信道建模与特性研究,水下LED无线光通信系统等方面的研究。E-mail: taoliu2004@gmail.com

【1】Hu S Q, Zhou T H, Chen W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese J Lasers, 2016, 43(12): 1206003.
胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43(12):1206003.

【2】Arnon S. Underwater optical wireless communication network[J]. Optical Engineering, 2010, 49(1): 015001.

【3】Hu X H, Hu S Q, Zhou T H, et al. Rapid estimation of the maximum communication distance for an underwater laser communication system[J]. Chinese J Lasers, 2015, 42(8): 0805007.
胡秀寒, 胡思奇, 周田华, 等. 水下激光通信系统最大通信距离的快速估计[J]. 中国激光, 2015, 42(8): 0805007.

【4】Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 2015, 23(18): 23302-23309.

【5】Doniec M, Detweiler C, Vasilescu I, et al. Using optical communication for remote underwater robot operation[C]. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010: 11689668.

【6】Xu J, Kong M, Lin A, et al. OFDM-based broadband underwater wireless optical communication system using a compact blue LED[J]. Optics Communications, 2016, 369: 100-105.

【7】Gabriel C, Khalighi M A, Bourennane S, et al. Channel modeling for underwater optical communication[C]. 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA. 2011: 12589066.

【8】Tang S, Dong Y, Zhang X. Impulse response modeling for underwater wireless optical communication links[J]. IEEE transactions on communications, 2014, 62(1): 226-234.

【9】Cox W, Muth J. Simulating channel losses in an underwater optical communication system[J]. Journal of the Optical Society of America A, 2014, 31(5): 920-934.

【10】Zhang H, Hui L, Dong Y. Angle of arrival analysis for underwater wireless optical links[J]. IEEE Communications Letters, 2015, 19(12): 2162-2165.

【11】Fournier G R, Jonasz M. Computer-based underwater imaging analysis[C]. SPIE, 1999, 3761: 62-70.

【12】Petzold T J. Volume scattering functions for selected ocean waters[R]. [S.l.:s.n], 1972.

【13】Kahn J M, Barry J R. Wireless infrared communications[J]. Proceedings of the IEEE, 1997, 85(2): 265-298.

【14】Mobley C D. Light and water: radiative transfer in natural waters[Z]. San Diego: Academic Press,1994: 592.

【15】Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

【16】Li J, Ma Y, Zhou Q, et al. Monte Carlo study on pulse response of underwater optical channel[J]. Optical Engineering, 2012, 51(6): 066001.

【17】Cox W C. Simulation, modeling, and design of underwater optical communication systems[D]. Raleigh: North Carolina State University, 2012: 161-162.

【18】Morel A. Optical properties of pure water and pure sea water[J]. Optical Aspects of Oceanography, 1974: 1-24.

【19】Xu W Q. Research on wide-wave band measuring technique of sky background radiance[D]. Beijing: University of Chinese Academy of Science, 2013.
徐文清. 宽谱段天空背景辐射测量技术研究[D]. 北京: 中国科学院大学, 2013.

【20】Kopeika N S, Bordogna J. Background noise in optical communication systems[J]. Proceedings of the IEEE, 1970, 58(10): 1571-1577.

【21】Gagliardi R M, Karp S. Optical communications[M]. New York: Wiley-Interscience, 1976: 445.

引用该论文

Liu Tao,Zhang Hongming,Song Jian. Distribution of Arriving Angle of Signal in Underwater Scattering Channel[J]. Chinese Journal of Lasers, 2018, 45(3): 0306003

刘涛,张洪明,宋健. 水下散射信道信号到达角度分布研究[J]. 中国激光, 2018, 45(3): 0306003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF