半导体光电, 2018, 39 (3): 354, 网络出版: 2018-06-29  

等离激元共振增强多晶硅薄膜太阳电池性能研究

Study on Tunable LightTrapping for Polycrystalline Silicon Thin Film Solar Cells Based on Localized Surface Plasmons Resonance
作者单位
渤海大学 新能源学院, 辽宁 锦州 121000
摘要
采用磁控溅射方法, 在多晶硅薄膜太阳电池表面沉积了不同粒径大小的Au纳米粒子, 利用粒径大小可调控的Au纳米粒子的局域表面等离激元共振增强效应(LSPR), 对入射光中的可见光区域实现“光俘获”; 采用UVvis吸收光谱对LSPR进行了研究, 结果表明, LSPR能够有效拓展Au纳米粒子的光谱响应范围(400~800nm), 并且, 随着Au纳米粒子粒径的增大, LSPR共振吸收峰呈现出明显“红移”; 同时, 通过SERS表征, 证实LSPR能够有效增强Au纳米粒子周围的局域电磁场强度; 最后, 多晶硅太阳电池的JV特性曲线表明, 当Au纳米粒子溅射时间为50s时, 多晶硅太阳电池光电转换效率(η)最高为14.8%, 比未修饰Au纳米粒子的电池η提高了42.3%。
Abstract
The lighttrapping was studied by using Au nanoparticles (NPs) to create localized surface plasmons resonance (LSPR) effect on the surface of polycrystalline silicon thin film solar cells (PSTFSC). The random arrays of selfassembled Au NPs were decorated onto the surface of PSTFSCs with the aid of magnetron sputtering. By modulating the magnetron sputtering time for the Au film thickness, the size of Au NPs can be manipulated. The UVvis absorption spectra show that the photoresponse of asprepared samples is extended from 400 to 800nm, which is ascribed to the excitation of LSPR. Furthermore, a distinct redshift of LSPR absorption peak with the increase of Au NPs size was observed. Meanwhile, the local electromagnetic (EM) field efficiency enhancement is shown to be caused by plasmonically enhanced noble metalNPs, which was confirmed by surfaceenhanced Raman spectroscopy (SERS). Moreover, a significant photoelectric conversion efficiency (PCE) of 14.8% for PSTFSC decorated with Au NPs sputtering time of 50s is obtained compared with that of 10.4% for the pristine PSTFSC, which is shown by the current densityvoltage (JV) characteristics measurement.

邵珠峰, 王婷, 王含, 姜皓文, 张宇峰, 钟敏, 杨秀娟. 等离激元共振增强多晶硅薄膜太阳电池性能研究[J]. 半导体光电, 2018, 39(3): 354. SHAO Zhufeng, WANG Ting, WANG Han, JIANG Haowen, ZHANG Yufeng, ZHONG Min, YANG Xiujuan. Study on Tunable LightTrapping for Polycrystalline Silicon Thin Film Solar Cells Based on Localized Surface Plasmons Resonance[J]. Semiconductor Optoelectronics, 2018, 39(3): 354.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!