光谱学与光谱分析, 2018, 38 (6): 1949, 网络出版: 2018-06-29  

纳米相氟氧化物玻璃陶瓷中Er3+Yb3+离子对的量子剪裁发光造成的强的光谱调制

Intense Spectral Modulation by Quantum Cutting Luminescence of Er3+Yb3+ Ion-Pair in Nanophase Oxyfluoride Vitroceramics
作者单位
1 北京师范大学应用光学北京重点实验室和物理系, 北京 100875
2 中国科学院上海光机所, 上海 201800
3 上海应用技术大学材料科学与技术系, 上海 200235
摘要
研究了纳米相氟氧化物玻璃陶瓷中Er3+Yb3+离子对的量子剪裁发光造成的强的光谱调制现象。 测量了Er3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的X射线衍射谱、 表面形貌、 激发光谱、 吸收光谱、 和发光光谱; 而且也与Tb3+Yb3+双掺纳米相氟氧化物玻璃陶瓷的相对应的光谱参数进行了比较。 发现378 nm光激发样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV所导致的652.0 nm红色发光强度为522 nm光激发时的680.85倍和303.80倍; 我们还发现378 nm光激发所导致的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的 652.0 nm红色发光强度为样品(C) Er(0.5%)∶FOV 的491.05和184.12倍。 我们还发现在378 nm光激发时的样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的{978.0和1 012.0 nm}红外发光强度依次分别为样品(C) Er(0.5%)∶FOV 的{58.00和293.62}倍和{25.11和 67.50}倍。 更进一步, 对于652.0 nm波长发光的激发谱, 发现(A) Er(1%)Yb(8.0%)∶FOV和(B) Er(0.5%)Yb(3.0%)∶FOV的378.5 nm激发谱峰强度是(C) Er(0.5%)∶FOV的大约606.02和199.83倍。 同时, 也发现样品(A) Er(1%)Yb(8.0%)∶FOV和样品(B) Er(0.5%)Yb(3.0%)∶FOV的一级量子剪裁红外1 012或978 nm发光强度为样品(D) Tb(0.7%)Yb(5.0%)∶FOV的二级量子剪裁红外976 nm发光强度的101.38和29.19倍。 发现的该量子剪裁是目前所报道的最强的量子剪裁。 因此, 相信所发现的氟氧化物纳米玻璃陶瓷中Er3+Yb3+离子对的一级量子剪裁发光是强的可以作为量子剪裁层应用到提高晶硅太阳能电池的发电效率。 研究结果也能加速对目前国际热点的下一代环保的光谱调制太阳能电池的探索。
Abstract
In this paper, the spectral modulation by the quantum-cutting luminescence of Er3+Yb3+ ion-pairs in nanophase oxyfluoride vitroceramics is studied. We obtained X-ray diffraction spectra, surface topographies, excitation, absorption, and luminescence spectra of Er3+Yb3+ nanophase oxyfluoride vitroceramics, and compared them with the corresponding parameters of a Tb3+Yb3+-codoped sample. We find that the 652.0 nm wavelength red luminescence intensity is enhanced by the factors of 680.85 and 303.80 for (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV, respectively, when they are excited by 378 nm light than when they are excited by 522 nm light. It is also found that the 652.0 nm red luminescence intensity is enhanced 491.05 and 184.12 times for (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV than (C) Er(0.5%)∶FOV when they are both being excited by 378 nm light. the results show that the {978.0 and 1 012.0 nm} infrared luminescence intensities of (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV are {58.00 and 293.62} and {25.11 and 67.50} times, respectively, larger than the corresponding ones of (C) Er(0.5%)∶FOV when both excited with 378 nm light. And further, the intensities of the 378.5 nm excitation peak of (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV are about 606.02 time and 199.83 times, respectively, larger than (C) Er(0.5%)∶FOV when 652.0 nm luminescence wavelength is selected as the fluorescence receiving wavelength to measure the visible excitation spectra in the range of 250~628 nm. Meanwhile, we also find that the first-order quantum-cutting infrared 1 012 or 978 nm luminescence intensities of (A) Er(1%)Yb(8.0%)∶FOV and (B) Er(0.5%)Yb(3.0%)∶FOV are about 101.38 and 29.19 times larger than the second-order quantum-cutting infrared 976 nm luminescence intensity of (D) Tb(0.7%)Yb(5.0%)∶FOV. To the best of our knowledge, present quantum-cutting obtained in our study is the most intense quantum-cutting reported to date. Therefore, we believe that present first-order quantum-cutting luminescence of Er3+Yb3+-codoped oxyfluoride vitroceramics may be intense for the material’s use as a quantum-cutting layer to enhance the photovoltaic conversion efficiency of crystal silicon solar cell. The results can facilitate the probing of next-generation environmentally friendly spectral-modulation solar cells, which are currently the focus of global attention.

陈晓波, 李崧, 于春雷, 王水锋, 赵国营, 马辉, 郑东, 杨国建, 刘媛, 邓志威, 何青, 胡丽丽. 纳米相氟氧化物玻璃陶瓷中Er3+Yb3+离子对的量子剪裁发光造成的强的光谱调制[J]. 光谱学与光谱分析, 2018, 38(6): 1949. CHEN Xiao-bo, LI Song, YU Chun-lei, WANG Shui-feng, ZHAO Guo-ying, MA Hui, ZHENG Dong, YANG Guo-jian, LIU Yuan, DENG Zhi-wei, HE Qing, HU Li-li. Intense Spectral Modulation by Quantum Cutting Luminescence of Er3+Yb3+ Ion-Pair in Nanophase Oxyfluoride Vitroceramics[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1949.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!