首页 > 论文 > 光电工程 > 45卷 > 9期(pp:170625--1)

光纤偏振器件与组件的分布式串音测量研究进展

Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

偏振串音是指光纤偏振器件与组件中两个正交偏振传输模式之间在微扰点发生的能量相互耦合的现象,而沿传输方向串音的连续分布既能够直接反映其光学偏振性能,如起偏、椭偏、消偏等特性,也能间接反映其制备工艺和外部环境状态,如连接与固定处的应力和应变、温度状态等。因此,偏振串音是光纤偏振器件与组件的固有性能和环境影响的综合体现,有望发展成为在线测试、诊断评价光纤偏振器件与组件性能的通用特征参量。基于白光干涉原理的光学相干域偏振测量(OCDP)技术是实现分布式偏振串音检测的最优方法,它利用扫描式白光干涉仪实现不同偏振模式间的干涉,对分布式串音发生的空间位置及幅值强度进行精确测量,具有超高灵敏度、超大动态范围、超长测量长度等优点。本文以光纤偏振器件与组件——保偏光纤环和多功能集成光学调制器作为分布式偏振串音精确测量与应用的范例,介绍了基于OCDP 技术的分布式串音测试原理,回顾了测量误差的来源及相应的抑制方法,如由测试光路的参数非理想引入的静态误差以及由测试环境变化引入的动态误差,展示了不同环境温度下光纤偏振器件与组件的精确测试结果。最后,结合光纤偏振器件与组件复杂多变的工作环境,对分布式串音测量方法的发展进行了展望。

Abstract

The polarization crosstalk of a fiber optic polarization component and device refers to the optical power coupling that occurs at a disturbance point between the two orthogonal polarized modes propagating in it. The distributed polarization crosstalk along with the light propagation direction is directly responsible for the optical polarization properties, for example, the polarization, elliptical polarization, and depolarization properties. It also indirectly reflects the manufacturing technique and the state of the ambient environment, for example, the stress and strain at the joint and fixed position, as well as the temperature. Thus, it is the comprehensive embodiment of the intrinsic performance of the fiber optic polarization component and device and the influence of environment. It is expected to be a general characteristic parameter for online testing, diagnosis, and evaluation of the performance of the fiber optic polarization component and device. The best measurement method for distributed polarization crosstalk till now is the optical coherence domain polarimetry (OCDP). It is based on the white light interferometry and accurately measures the position and amplitude of the distributed polarization crosstalk using a scanning white light interferometer to realize interference between different polarized modes. It has the merits of ultrahigh sensitivity, ultra-wide dynamic range, and ultra-long measurable length. This review paper takes the polarization maintaining fiber coil and multifunctional integrated optical modulator as examples of distributed polarization crosstalk measurement and application. Firstly, the measurement principle of distributed polarization crosstalk based on the OCDP is introduced. Secondly, the measurement error sources and corresponding suppression methods are reviewed. Thirdly, the accurate measurement results of the fiber optic polarization component and device at different temperature are demonstrated. In the end, it outlooks the development of distributed polarization crosstalk measurement considering the complicated and changeable operation environment of the fiber optic polarization component and device.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.12086/oee.2018.170625

所属栏目:综述

基金项目:国家重大科学仪器专项(N2013YQ040815);国家自然科学基金资助项目(61422505, 61227013);教育部博士点基金资助项目(20122304110022);哈尔滨市科技创新人才研究基金资助项目(2015RAYXJ009)

收稿日期:2017-10-09

修改稿日期:2018-03-26

网络出版日期:--

作者单位    点击查看

杨 军:哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001哈尔滨工程大学理学院,黑龙江 哈尔滨 150001
苑勇贵:哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
喻张俊:哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001哈尔滨工程大学理学院,黑龙江 哈尔滨 150001
李寒阳:哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001哈尔滨工程大学理学院,黑龙江 哈尔滨 150001
侯长波:哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
张浩亮:哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001哈尔滨工程大学理学院,黑龙江 哈尔滨 150001
苑立波:哈尔滨工程大学纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001哈尔滨工程大学理学院,黑龙江 哈尔滨 150001桂林电子科技大学电子工程与自动化学院,广西 桂林 541004

联系人作者:杨军(yangjun@hrbeu.edu.cn)

备注:杨军(1976-),男,博士,教授,博士生导师,主要从事光纤器件测试与传感方面的研究

【1】Ramaswamy V, French W G, Standley R D. Polarization characteristics of noncircular core single-mode fibers[J]. Applied Optics, 1978, 17(18): 3014–3017.

【2】Stolen R H, Ramaswamy V, Kaiser P, et al. Linear polarization in birefringent single‐mode fibers[J]. Applied Physics Letters, 1978, 33(8): 699–701.

【3】Bergh R, Lefevre H, Shaw H. An overview of fiber-optic gyroscopes[ J]. Journal of Lightwave Technology, 1984, 2(2): 91–107.

【4】Eickhoff W. In-line fibre-optic polariser[J]. Electronics Letters, 1980, 16(20): 762–764.

【5】Arditty H J, Papuchon M, Puech C. Reciprocity properties of a branching waveguide[M]//Ezekiel S, Arditty H J. Fiber-Optic Rotation Sensors and Related Technologies. Berlin, Heidelberg: Springer, 1982: 102–110.

【6】Nayar B K, Smith D R. Monomode-polarization-maintaining fiber directional couplers[J]. Optics Letters, 1983, 8(10): 543–545.

【7】Okamoto K, Miyazawa H, Noda J, et al. Novel optical isolator consisting of a YIG spherical lens and PANDA-fibre polarisers[ J]. Electronics Letters, 1985, 21(1): 36–38.

【8】Li Z H, Meng Z, Chen X J, et al. Method for improving the resolution and accuracy against birefringence dispersion in distributed polarization cross-talk measurements[J]. Optics Letters, 2012, 37(14): 2775–2777.

【9】Yang J, Yuan Y G, Zhou A, et al. Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy[J]. Journal of Lightwave Technology, 2014, 32(22): 4243–4252.

【10】Bing W, Yang J, Yuan Y G, et al. Performance tests of PM optical fiber coupler based on optical coherence domain polarimetry[ J]. Proceedings of SPIE, 2012, 8421: 8421A2.

【11】Chen S, Giles I P, Fahadiroushan M. Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry[ J]. Optics Letters, 1991, 16(5): 342–344.

【12】Chen S, Giles I P. Optical coherence domain polarimetry: intensity and interferometric type for quasi-distributed optical fiber sensors[J]. Proceedings of SPIE, 1990, 1370: 217–225.

【13】Chen S, Giles I P. ''On-spot'' interferometric optical coherence domain polarimetry for quasi-distribute temperature sensors[J]. Electronics Letters, 1990, 26(19): 1607–1608.

【14】Li C, Yang J, Yu Z J, et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 2016, 24(15): 16247–16257.

【15】Li C, Yang J, Yuan Y G, et al. A differential delay line for optical coherence domain polarimetry[J]. Measurement Science and Technology, 2015, 26(4): 045102.

【16】Yuan Y G, Lu D C, Yang J, et al. Range extension of the optical delay line in white light interferometry[J]. Applied Optics, 2017, 56(16): 4598–4605.

【17】Hua Y, Shu P, Zheng D S, et al. Method for improving extinction ratio of Y-waveguide chip for fiber-optic gyroscope: 103267998B[P]. 2013-08-28.

【18】Xie Z, Yang Y H, Yan H, et al. Estimation of distributed polarization coupling error in optical fiber coil of fiber optic gyroscope[ J]. Chinese Journal of Lasers, 2017, 44(10): 1006004.
谢泽, 杨远洪, 闫晗, 等. 光纤陀螺光纤环分布偏振耦合误差预 估[J]. 中国激光, 2017, 44(10): 1006004.

【19】Li Z Z, Li Z H, Yao X T, et al. Research on influence of polarization crosstalk on the zero drift and random walk of fiber optic gyroscope[J]. Acta Optica Sinica, 2014, 34(12): 1206001.
李子忠, 李志宏, 姚晓天, 等. 偏振串扰对光纤陀螺零漂及随机 游走影响的研究[J]. 光学学报, 2014, 34(12): 1206001.

【20】Yu Z J, Yang J, Yuan Y G, et al. High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework[J]. IEEE Photonics Journal, 2017, 9(3): 7103508.

【21】Yu Z J, Yang J, Yuan Y G, et al. Quasi-distributed birefringence dispersion measurement for polarization maintain device with high accuracy based on white light interferometry[J]. Optics Express, 2016, 24(2): 1587–1597.

【22】Jin J, Wang S, Song J M, et al. Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP[J]. Optical Fiber Technology, 2013, 19(5): 495–500.

【23】Zhang H X, Chen X W, Ye W T, et al. Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber[J]. Measurement Science and Technology, 2012, 23(2): 025203.

【24】Yuan Y G, Li C, Yang J, et al. Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra- simple dual-channel configuration[J]. Photonics Research, 2015, 3(4): 115–118.

【25】Li C, Yuan Y G, Yang J, et al. Inconsistency measurement between two branches of LiNbO3 integrated optic Y-junction[J]. Optics Communications, 2016, 369: 152–158.

【26】Peng F, Li C, Yang J, et al. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system[J]. Applied Optics, 2017, 56(20): 5614–5619.

【27】Takada K, Mitachi S. Polarization crosstalk dependence on length in silica-based waveguides measured by using optical low coherence interference[J]. Journal of Lightwave Technology, 1998, 16(8): 1413–1422.

【28】Zhang H L, Yang J, Li C, et al. Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips[J]. Applied Optics, 2017, 56(24): 6873–6880.

【29】Tang F, Wang X Z, Zhang Y M, et al. Influence of birefringence dispersion on distributed measurement of polarization coupling in birefringent fibers[J]. Optical Engineering, 2007, 46(7): 075006.

【30】Smith E D J, Zvyagin A V, Sampson D D. Real-time dispersion compensation in scanning interferometry[J]. Optics Letters, 2002, 27(22): 1998–2000.

引用该论文

Yang Jun,Yuan Yonggui,Yu Zhangjun,Li Hanyang,Hou Changbo,Zhang Haoliang,Yuan Libo. Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device[J]. Opto-Electronic Engineering, 2018, 45(9): 170625

杨 军,苑勇贵,喻张俊,李寒阳,侯长波,张浩亮,苑立波. 光纤偏振器件与组件的分布式串音测量研究进展[J]. 光电工程, 2018, 45(9): 170625

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF