首页 > 论文 > 光电工程 > 45卷 > 9期(pp:180168--1)

胶体光子晶体修饰光纤及相对湿度检测应用

Colloidal photonic crystal modified optical fiber and relative humidity detection application

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文提出了一种用胶体光子晶体来装饰单模光纤装饰端面的方法,并说明了这种结构用于相对湿度传感器的原理。研究了用垂直沉积法在光纤端面制备PS(polystyrene)胶体晶体、复合胶体晶体和SiO2 反蛋白石(inverse opal)的技术,用扫描电子显微镜表征了制备得到的胶体晶体及反蛋白石,测量了端面被胶体晶体修饰光纤的反射光谱,并测试了光纤端面复合光子晶体的相对湿度传感特性。提出了一种毛细管-光纤结构,提高了生长在光纤端面处胶体晶体的质量和其机械稳定性。

Abstract

This paper propose a route to decorated end facet of single mode optical fibers with colloidal photonic crystals and present the principle for this structure to be used as relative humidity sensing. The approaches of preparing PS colloidal crystals, composite colloidal crystals, and SiO2 inverse opals on the end faces of optical fibers by vertical deposition was studied. The prepared colloidal crystals and inverse opal were structurally characterized, and the reflection spectra of the photonic crystals-modified microstructure optical fibers was measured. The relative humidity sensing characteristics of composite photonic crystals decorated microstructure optical fibers were tested. Finally, a capillary-fiber structure was proposed to improve the quality and mechanical stability of the colloidal crystals fabricated on the fiber endfaces.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O734;TN253

DOI:10.12086/oee.2018.180168

所属栏目:科研论文

基金项目:国家自然科学基金资助项目 (61605082);江苏省自然科学基金资助项目(BK20160969);江苏省高校基金资助项目(16KJB510020);江苏省高等教育重点学科建设项目资助项目(PAPD);国家博士后基金资助项目(2017M611654);江苏省博士后基金资助项目(1701074B);南信大人才启动基金资助项目(2015r040);江苏省气象观测与信息处理重点实验室开放项目资助项目(KDXS1506)

收稿日期:2018-02-09

修改稿日期:2018-05-03

网络出版日期:--

作者单位    点击查看

潘 超:南京信息工程大学电子与信息工程学院,江苏 南京 210044
周俊萍:南京信息工程大学电子与信息工程学院,江苏 南京 210044江苏省气象探测与信息处理重点实验室,江苏 南京 210044
倪海彬:南京信息工程大学电子与信息工程学院,江苏 南京 210044江苏省气象探测与信息处理重点实验室,江苏 南京 210044

联系人作者:潘超(18252083360@163.com)

备注:潘超(1993-),男,硕士研究生,主要从事光纤传感,纳米光电传感的研究

【1】Guo W H, Wang M, Yu P, et al. Fabrication of 3D colloidal photonic crystals in cavity of optical fiber end face[J]. Chinese Optics Letters, 2010, 8(5): 515–516.

【2】Feng Pan F, Deng Y T, Ma X C, et al. Measurement of spatial refractive index distributions of fusion spliced optical fibers by digital holographic microtomography[J]. Optics Communications, 2017, 403: 370–375.

【3】Benjamin Hatton B, Mishchenko L, Davis S, et al. Assembly of large-area, highly ordered, crack-free inverse opal films[J]. PNAS, 2010, 107(23): 10354–10359.

【4】Anusha Ekbote A, Patil P S, Shivaraj R, et al. Structural, third-order optical nonlinearities and figures of merit of (E)-1-(3-substituted phenyl)-3-(4-fluorophenyl) prop-2-en-1-one under CW regime: New chalcone derivatives for optical limiting applications[J]. Dyes and Pigments, 2017, 139: 720–729.

【5】Chen C M, Xu J, Yao Y. Fabrication of miniaturized CSRR-loaded HMSIW humidity sensors with high sensitivity and ultra-low humidity hysteresis[J]. Sensors and Actuators B: Chemical, 2018, 256: 1100–1106.

【6】Gomez D, Morgan S P, Hayes-Gill B R, et al. Polymeric optical fibre sensor coated by SiO2 nanoparticles for humidity sensing in the skin microenvironment[J]. Sensors and Actuators B: Chemical, 2018, 254: 887–895.

【7】Bao L F, Dong X Y, Shen C Y. Interferometric optic fiber humidity sensors based on graphene oxides[J]. Journal of China University of Metrology, 2018, 29(1): 75–80.
包立峰, 董新永, 沈常宇. 基于氧化石墨烯的干涉型光纤湿度传 感器[J]. 中国计量大学学报, 2018, 29(1): 75–80.

【8】Cheng J N. Mach-Zehnder interferometer based on fiber taper and fiber core mismatch for humidity sensing[J]. Acta Physica Sinica, 2018, 67(2): 024212.
程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder 干涉湿度传感 器[J]. 物理学报, 2018, 67(2): 024212.

【9】Shao M, Qiao X G, Fu H W, et al. Fiber humidity sensor based on fiber Bragg grating sandwiched in SMS fiber structure[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 3008–3013.
邵敏, 乔学光, 傅海威, 等. 光纤布拉格光栅嵌入SMS 光纤结构 的湿度传感器[J]. 光谱学与光谱分析, 2016, 36(9): 3008–3013.

【10】Mendoza C, Gonzalez, Gordo E, et al. Protective nature of nano-TiN coatings shaped by EPD on Ti substrates[J]. Journal of the European Ceramic Society, 2018, 38(2): 495–900.

【11】Zhou Z C, Zhao X S. Flow-controlled vertical deposition method for the fabrication of photonic crystals[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(4): 1524–1526.

【12】Wang S C, Xu S S, Wang Y M, et al. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging[ J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173: 871–879.

【13】Pettinari G, Gerardino A, Businaro L, et al. A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides[J]. Microelectronic Engineering, 2017, 174: 16–19.

引用该论文

Pan Chao,Zhou Junping,Ni Haibin. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]. Opto-Electronic Engineering, 2018, 45(9): 180168

潘 超,周俊萍,倪海彬. 胶体光子晶体修饰光纤及相对湿度检测应用[J]. 光电工程, 2018, 45(9): 180168

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF