量子电子学报, 2018, 35 (5): 608, 网络出版: 2018-10-07  

基于卡尔曼模糊自适应PID的激光雷达斩光频率控制方法

Chopping frequency control method in lidar system based on Kalman fuzzy adaptive PID
王贤宇 1,2,*方欣 1,2李陶 1
作者单位
1 中国科学技术大学地球和空间科学学院,中国科学院近地空间环境重点实验室, 安徽 合肥 230026
2 中国科学院空间天气学国家重点实验室, 北京 100190
摘要
为提高激光雷达回波信号斩光高度的稳定性,针对臭氧探测激光 雷达系统后继光路中直流无刷电机的 高转速高转矩控制系统,提出了模糊自适应PID控制方法。通过模糊推理实现不同状态下PID参数的在线自 动整定,并利用卡尔曼滤波减少控制噪声和测量噪声的干扰。基于控制理论,用Matlab软件进行控制算 法性能模拟,并用LabVIEW平台实现系统的控制算法。结果表明与普通PID控制方法相比,基于模糊自适 应PID控制方法的激光雷达斩光频率阶跃响应调节时间减少33.3%, 延迟时间短60%, 上升时间短42.1%, 斩 光盘的频率抖动仅约为0.0492 Hz。模糊自适应PID控制系统稳态误差更小,有更好的适应性、稳健性和抗干扰性。
Abstract
In order to improve the stability of chopping height of lidar echo signal, a fuzzy self-adaptive PID control method is proposed for the high speed and high torque control system of DC brushless motor in the subsequent optical path of ozone detection lidar system. On-line automatic tuning of PID parameters in different states by fuzzy reasoning is realized, and Kalman filter is used to reduce the interference of control and measurement noise. Based on control theory, performance simulation of the control algorithm is carried out using Matlab software, and control algorithm of the system is realized in LabVIEW software platform. Results show that compared with the conventional PID control method, step response time of laser chopping frequency based on the fuzzy self-adaptive PID control method is reduced by 33.3%, delay time is shorten by 60%, and rise time is reduced by 42.1%. The frequency jitter of chopper disc is only about 0.0492 Hz. The fuzzy self-adaptive PID control system has smaller steady state error, better adaptability and robustness, and better anti-interference performance.

王贤宇, 方欣, 李陶. 基于卡尔曼模糊自适应PID的激光雷达斩光频率控制方法[J]. 量子电子学报, 2018, 35(5): 608. WANG Xianyu, FANG Xin, LI Tao. Chopping frequency control method in lidar system based on Kalman fuzzy adaptive PID[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 608.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!