首页 > 论文 > Frontiers of Optoelectronics > 11卷 > 3期(pp:245--1)

Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Longitudinal twinning α-In2Se3 nanowires with the (1018) twin plane were synthesized to fabricate high performance single nanowire based photodetectors. As-synthesized α-In2Se3 nanowire exhibited typical n-type semiconducting behavior with an electron mobility of 23.1 cm2 V–1 S–1 and a broadband spectral response from 300 to 1100 nm, covering the ultraviolet-visible-near-infrared (UV-visible-NIR) region. Besides, the fabricated device showed a high responsivity of 8.57 × 105 A W–1, high external quantum efficiency up to 8.8 × 107% and a high detectivity of 1.58 × 1012 Jones under 600 nm light illumination at a basis of 3 V, which are much higher than previously reported In2Se3 nanostructures due to the interface defect effect of the twin plane. The results indicated that the longitudinal twinning α-In2Se3 nanowires have immense potential for further applications in highly performance broadband photodetectors and other optoelectronic devices.1)

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1007/s12200-018-0820-2

所属栏目:RESEARCH ARTICLE

收稿日期:2018-04-04

修改稿日期:2018-05-03

网络出版日期:--

作者单位    点击查看

Zidong ZHANG:State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaKey Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Research Center of Advanced Materials, Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
Juehan YANG:State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Fuhong MEI:Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Research Center of Advanced Materials, Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
Guozhen SHEN:State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, ChinaCollege of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100029, China

联系人作者:Guozhen SHEN(gzshen@semi.ac.cn)

备注:Zidong Zhang received his B.Sc. degree from School of Material Science and Engineering, Nanchang Hangkong University, China, in 2015. Now he is a master student in the Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, China. His research interest focuses on investigation of optoelectronic properties of low-dimensional semiconductor materials.

【1】Fan Z, Ho J C, Jacobson Z A, Razavi H, Javey A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11066–11070

【2】Li L, Gu L, Lou Z, Fan Z, Shen G. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11(4): 4067–4076

【3】Kind H, Yan H, Messer B, Law M, Yang P. NW ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158–160

【4】Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C, Marks T J, Janes D B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2(6): 378–384

【5】Yoo J, Jeong S, Kim S, Je J H. A stretchable nanowire UV-Vis-NIR photodetector with high performance. Advanced Materials, 2015, 27(10): 1712–1717

【6】Wang Z, Wang H, Liu B, Qiu W, Zhang J, Ran S, Huang H, Xu J, Han H, Chen D, Shen G. Transferable and flexible nanorodassembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano, 2011, 5(10): 8412–8419

【7】Lou Z, Li L, Shen G. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Research, 2015, 8(7): 2162–2169

【8】Park CM, Sohn H J. Quasi-intercalation and facile amorphization in layered ZnSb for Li-ion batteries. Advanced Materials, 2010, 22(1): 47–52

【9】Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithiumion batteries. Nano Letters, 2012, 12(6): 3005–3011

【10】Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. Journal of the American Chemical Society, 2003, 125(52): 16176–16177

【11】Liu X, Liu X,Wang J, Liao C, Xiao X, Guo S, Jiang C, Fan Z,Wang T, Chen X, Lu W, Hu W, Liao L. Transparent, high-performance thin-film transistors with an InGaZnO/aligned-SnO2 -nanowire composite and their application in photodetectors. Advanced Materials, 2014, 26(43): 7399–7404

【12】Feng G, Yang C, Zhou S. Nanocrystalline Cr2+-doped ZnSe nanowires laser. Nano Letters, 2013, 13(1): 272–275

【13】Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7(11): 5046–5052

【14】Wang Z, Safdar M, Jiang C, He J. High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In2Te3 nanostructures. Nano Letters, 2012, 12(9): 4715–4721

【15】Zhai T, Fang X, Liao M, Xu X, Li L, Liu B, Koide Y, Ma Y, Yao J, Bando Y, Golberg D. Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano, 2010, 4(3): 1596–1602

【16】Peng H, Zhang X F, Twesten R D, Cui Y. Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research, 2009, 2(4): 327–335

【17】Xu J, Luan C Y, Tang Y B, Chen X, Zapien J A, ZhangWJ, Kwong H L, Meng X M, Lee S T, Lee C S. Low-temperature synthesis of CuInSe2 nanotube array on conducting glass substrates for solar cell application. ACS Nano, 2010, 4(10): 6064–6070

【18】Julien C, Hatzikraniotis E, Chevy A, Kambas K. Electrical behavior of lithium intercalated layered In-Se compounds. Materials Research Bulletin, 1985, 20(3): 287–292

【19】Li Q, Li Y, Gao J, Wang S, Sun X. High performance single In2Se3 nanowire photodetector. Applied Physics Letters, 2011, 99(24): 243105–243109

【20】Ali Z, Mirza M, Cao C, Butt F K, Tanveer M, Tahir M, Aslam I, Idrees F, Safdar M. Wide range photodetector based on catalyst free grown indium selenide microwires. ACS Applied Materials & Interfaces, 2014, 6(12): 9550–9556

【21】Kang D, Rim T, Baek C K, Meyyappan M, Lee J S. Thermally phase-transformed In2Se3 nanowires for highly sensitive photodetectors. Small, 2014, 10(18): 3795–3802

【22】Peng H, Schoen D T, Meister S, Zhang X F, Cui Y. Synthesis and phase transformation of In2Se3 and CuInSe2 nanowires. Journal of the American Chemical Society, 2007, 129(1): 34–35

【23】Jasinski J, Swider W, Washburn J, Liliental-Weber Z, Chaiken A, Nauka K, Gibson G A, Yang C C. Crystal structure of k-In2Se3. Applied Physics Letters, 2002, 81(23): 4356–4358

【24】Lakshmikumar S T, Rastogi A C. Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Solar Energy Materials and Solar Cells, 1994, 32(1): 7–19

【25】Lai K, Peng H, Kundhikanjana W, Schoen D T, Xie C, Meister S, Cui Y, Kelly M A, Shen Z X. Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Letters, 2009, 9(3): 1265–1269

【26】Yu B, Ju S, Sun X H, Ng G, Nguyen T D, Meyyappan M, Janes D B. Indium selenide nanowire phase-change memory. Applied Physics Letters, 2007, 91(13): 133119–133121

【27】Algra R E, Verheijen M A, Borgstrom M T, Feiner L F, Immink G, van Enckevort W J, Vlieg E, Bakkers E P. Twinning superlattices in indium phosphide nanowires. Nature, 2008, 456(7220): 369–372

【28】Grap T, Rieger T, Blomers Ch, Schapers T, Grützmacher D, Lepsa M I. Self-catalyzed VLS grown InAs nanowires with twinning superlattices. Nanotechnology, 2013, 24(33): 335601

【29】Algra R E, Verheijen M A, Feiner L F, Immink G G W, Enckevort W J, Vlieg E, Bakkers E P A M. The role of surface energies and chemical potential during nanowire growth. Nano Letters, 2011, 11(3): 1259–1264

【30】Burgess T, Breuer S, Caroff P, Wong-Leung J, Gao Q, Hoe Tan H, Jagadish C. Twinning superlattice formation in GaAs nanowires. ACS Nano, 2013, 7(9): 8105–8114

【31】Meng Q, Jiang C, Mao S X. Temperature-dependent growth of zincblende-structured ZnTe nanostructures. Journal of Crystal Growth, 2008, 310(20): 4481–4486

【32】Hao Y, Meng G, Wang Z L, Ye C, Zhang L. Periodically twinned nanowires and polytypic nanobelts of ZnS: the role of mass diffusion in vapor-liquid-solid growth. Nano Letters, 2006, 6(8): 1650–1655

【33】Wang J, Sun X W, Xie S, Zhou W, Yang Y. Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures. Crystal Growth & Design, 2008, 8(2): 707–710

【34】Kim H S, Myung Y, Cho Y J, Jang D M, Jung C S, Park J, Ahn J P. Three-dimensional structure of twinned and zigzagged one-dimensional nanostructures using electron tomography. Nano Letters, 2010, 10(5): 1682–1691

【35】Xu J, Lu A J, Wang C, Zou R, Liu X, Wu X, Wang Y, Li S, Sun L, Chen X, Oh H, Baek H, Yi G, Chu L. ZnSe-based longitudinal twinning nanowires. Advanced Engineering Materials, 2014, 16(4): 459–465

【36】Xu J,Wang C, Zhang Y, Liu X, Liu X, Huang S, Chen X. Structural, vibrational and luminescence properties of longitudinal twinning Zn2GeO4 nanowires. CrystEngComm, 2013, 15(4): 764–768

【37】Ikonic Z, Srivastava G P, Inkson J C. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zincblende-type semiconductors. Physical Review B: Condensed Matter, 1993, 48(23): 17181–17193

【38】Tsuzuki H, Cesar D F, Dias M R, Castelano L K, Lopez-Richard V, Rino J P, Marques G E. Tailoring electronic transparency of twinplane 1D superlattices. ACS Nano, 2011, 5(7): 5519–5525

【39】Akiyama T, Yamashita T, Nakamura K, Ito T. Band alignment tuning in twin-plane superlattices of semiconductor nanowires. Nano Letters, 2010, 10(11): 4614–4618

【40】Shimamura K, Yuan Z, Shimojo F, Nakano A. Effects of twins on the electronic properties of GaAs. Applied Physics Letters, 2013, 103(2): 022105–022109

【41】Johansson J, Karlsson L S, Svensson C P T, Martensson T, Wacaser B A, Deppert K, Samuelson L, Seifert W. Structural properties of<111>B-oriented III-V nanowires. Nature Materials, 2006, 5(7): 574–580

【42】Shen G, Xu J, Wang X, Huang H, Chen D. Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications. Advanced Materials, 2011, 23(6): 771–775

【43】Shao D, Gao J, Chow P, Sun H, Xin G, Sharma P, Lian J, Koratkar N A, Sawyer S. Organic–inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano Letters, 2015, 15(6): 3787–3792

【44】Fonoberov V A, Balandin A A. ZnO quantum dots: physical properties and optoelectronic applications. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 19–38

【45】Zhai T, Ma Y, Li L, Fang X, Liao M, Koide Y, Yao J, Bando Y, Golberg D. Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping. Journal of Materials Chemistry, 2010, 20(32): 6630–6637

【46】Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L 2nd, Yu B. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2014, 8(1): 514–521

引用该论文

Zidong ZHANG,Juehan YANG,Fuhong MEI,Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Frontiers of Optoelectronics, 2018, 11(3): 245–255

Zidong ZHANG,Juehan YANG,Fuhong MEI,Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Frontiers of Optoelectronics, 2018, 11(3): 245–255

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF