红外与毫米波学报, 2018, 37 (6): 668, 网络出版: 2018-12-26  

基于肖特基电流输运模型和扫描分布电阻显微术的窄量子阱载流子浓度表征

2D-carrier profiling in narrow quantum wells by a Schottky’s current transport model based on scanning spreading resistance microscopy
作者单位
1 兰州空间技术物理研究所 真空技术与物理国家重点实验室, 甘肃 兰州 730000
2 中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
摘要
目前对于纳米尺度半导体材料的局域电导与对应载流子浓度关系的描述主要以参数拟合为主。其关系模型主要依赖人工拟合参数, 例如理想因子。所以无法从测得局域电导分布来推出载流子浓度分布。为此, 提出了一种获取量子阱中载流子浓度的模型。通过小于10 nm分辨的截面扫描分布电阻显微术, 测得了GaAs/AlGaAs量子阱(1 1 0)截面的局域电导分布。基于实验设置, 提出了只含有掺杂浓度参量的实验描述模型。通过模型, 由测得的量子阱(掺杂浓度从1016/cm3到1018/cm3)局域电导分布, 推导出了其载流子分布。相对误差在30%之内。
Abstract
Current studies on the relationship between carrier concentration in nano-scale semiconductor structure and its local conductance is mainly on parameters fitting. For above connection, existing models rely on artificial fitting parameters such as ideal factor. For above reason, derivation of carrier concentration though measured local conductance can not be done. In this work, we present a scheme to obtain the carrier concentration in narrow quantum wells (QWs). Cross-sectional scanning spreading resistance microscopy (SSRM) provides unparalleled spatial resolution (<10 nm, Capable of characterizing single QW layer) in electrical characterization. High-resolution local conductance has been measured by SSRM on molecular beam epitaxy-grown GaAs/AlGaAs QWs cleaved surface (110). Based on our experimental set-up, a model which describes conductance by the only argument, i.e. carrier concentration has been built. Using the model, our implementation derived carrier concentration from SSRM measured local conductance in GaAs/AlGaAs QWs (doping level: 1016/cm3-1018/cm3). Relative errors of the results are within 30%.

黄文超, 王晓芳, 陈效双, 薛玉雄, 杨生胜. 基于肖特基电流输运模型和扫描分布电阻显微术的窄量子阱载流子浓度表征[J]. 红外与毫米波学报, 2018, 37(6): 668. HUANG Wen-Chao, WANG Xiao-Fang, CHEN Xiao-Shuang, XUE Yu-Xiong, YANG Sheng-Sheng. 2D-carrier profiling in narrow quantum wells by a Schottky’s current transport model based on scanning spreading resistance microscopy[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 668.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!