Journal of Innovative Optical Health Sciences, 2018, 11 (6): 1850038, Published Online: Dec. 27, 2018   

Unsupervised calibration for noninvasive glucose-monitoring devices using mid-infrared spectroscopy

Author Affiliations
1 Ricoh Institute of Information and Communication Technology, Research and Development Division, Ricoh Company, 2-7-1 Izumi, Ebina 243-0460, Japan
2 Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Sendai 980-8579, Japan
3 Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aoba, Sendai 980-8579, Japan
Abstract
Noninvasive, glucose-monitoring technologies using infrared spectroscopy that have been studied typically require a calibration process that involves blood collection, which renders the methods somewhat invasive. We develop a truly noninvasive, glucose-monitoring technique using midinfrared spectroscopy that does not require blood collection for calibration by applying domain adaptation (DA) using deep neural networks to train a model that associates blood glucose concentration with mid-infrared spectral data without requiring a training dataset labeled with invasive blood sample measurements. For realizing DA, the distribution of unlabeled spectral data for calibration is considered through adversarial update during training networks for regression to blood glucose concentration. This calibration improved the correlation coe±cient between the true blood glucose concentrations and predicted blood glucose concentrations from 0.38 to 0.47. The result indicates that this calibration technique improves prediction accuracy for mid-infrared glucose measurements without any invasively acquired data.

Ryosuke Kasahara, Saiko Kino, Shunsuke Soyama, Yuji Matsuura. Unsupervised calibration for noninvasive glucose-monitoring devices using mid-infrared spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850038.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!