首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:31005--1)

多尺度分块的自适应采样率压缩感知算法

Multi-Scale Block Adaptive Sampling Rate Compression Sensing Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

现有的自适应多尺度分块压缩感知算法忽略了高频信息在重建中的作用, 导致图像的边缘轮廓得不到充分重建; 并且在压缩分块过程中采用固定分块大小, 没有充分利用图像自身的稀疏性。针对上述不足, 提出一种多尺度分块的自适应采样率压缩感知算法。该算法充分利用小波变换后的高频信号和低频信号, 同时针对图像的固定尺寸分块进行改进。首先, 对低频部分利用自适应邻域特征的空域滤波算法消除块效应; 其次, 对高频部分依据纹理特征自适应选取图像块的大小, 实现样本块尺寸的自动划分和采样率的自适应; 最后, 分别对纹理信息各异的图像进行压缩重建仿真。结果表明, 本方法重建效果明显优于已有的自适应采样率算法。

Abstract

In the existing adaptive multi-scale block-slice compression sensing algorithms, the role of high-frequency information in the reconstruction process is neglected, resulting in the not-complete-reconstruction of the edge contours of images. Moreover, the fixed block size is used in the process of compressing blocks, and thus the sparsity of the image itself is not fully used. In view of the above deficiencies, a multi-scale block adaptive sampling rate compression sensing algorithm is proposed. This algorithm makes full use of the high-frequency and low-frequency signals after wavelet transform, and simultaneously improves the fixed size block of images. First, the spatial filtering algorithm based on adaptive neighborhood features is used to eliminate the blockness in the low frequency part. Second, as for the high frequency part, the size of the image block is adaptively selected according to the texture features, and thus the sample block size is automatically partitioned and the sampling rate is adaptive. Finally, the images with different amounts of texture information are compressed and reconstructed. The results show that the reconstruction effect by the proposed method is obviously superior to those by the existing adaptive sampling rate algorithms.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.1

DOI:10.3788/lop56.031005

所属栏目:图像处理

基金项目:国家自然科学基金(51774281)、徐州市科技创新重点研发项目(KC16GZ013)

收稿日期:2018-06-06

修改稿日期:2018-07-18

网络出版日期:2018-08-31

作者单位    点击查看

程德强:中国矿业大学信息与控制工程学院, 江苏 徐州 221116
邵丽蓉:中国矿业大学信息与控制工程学院, 江苏 徐州 221116
李岩:中国矿业大学信息与控制工程学院, 江苏 徐州 221116
管增伦:中国中煤能源集团有限公司, 北京 100120

联系人作者:程德强(m15162143261@163.com)

【1】Wang M, Liu K X, Liu L, et al. Super-resolution reconstruction of image based on optimized convolution neural network[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111005.
王民, 刘可心, 刘利, 等. 基于优化卷积神经网络的图像超分辨率重建[J]. 激光与光电子学进展, 2017, 54(11): 111005.

【2】Chen J, Gao H B, Wang W G, et al. Methods and applications of image super-resolution restoration[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020004.
陈健, 高慧斌, 王伟国, 等. 图像超分辨率复原方法及应用[J]. 激光与光电子学进展, 2015, 52(2): 020004.

【3】Zhang L, Yang J F, Xue B, et al. Modified MAP algorithm for single frame super-resolution reconstruction[J]. Laser & Optoelectronics Progress, 2011, 48(1): 011003.
张磊, 杨建峰, 薛彬, 等. 改进的最大后验概率估计法实现单幅图像超分辨率重建[J]. 激光与光电子学进展, 2011, 48(1): 011003.

【4】Tang C Y, Chen Y T, Li Q, et al. Adaptive temporal compressive sensing for video based on signal correlation[J]. Acta Optica Sinica, 2016, 36(10): 1010001.
唐超影, 陈跃庭, 李奇, 等. 基于信号相关性的自适应时域视频压缩感知重建方法[J]. 光学学报, 2016, 36(10): 1010001.

【5】Weng J W, Yang C P, Li H. Self-interference incoherent digital holography by compressive sensing[J]. Acta Optica Sinica, 2016, 36(2): 0209001.
翁嘉文, 杨初平, 李海. 自干涉非相干数字全息的压缩感知重建[J]. 光学学报, 2016, 36(2): 0209001.

【6】Tang J L, Chen Z B, Su B H, et al. Super-resolution restoration of low quality face images[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031007.
唐佳林, 陈泽彬, 苏秉华, 等. 低质量人脸图像的超分辨率复原[J]. 激光与光电子学进展, 2018, 55(3): 031007.

【7】Gan L. Blockcompressed sensing of natural images[C]∥15th International Conference on Digital Signal Processing, 2007: 403-406.

【8】Li R, Zhu X C. A PCA-based smoothed projected Landweber algorithm for block compressed sensing image reconstruction[C]∥2012 International Conference on Image Analysis and Signal Processing, 2012: 1-6.

【9】Jiang Y W, Yu X M. An image variable sampling and reconstruction algorithm based DWT multiscale block compressed sensing[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(3): 30-33.
蒋业文, 于昕梅. 基于DWT的多尺度分块变采样率压缩感知图像重构算法[J]. 中山大学学报(自然科学版), 2013, 52(3): 30-33.

【10】Gao D H. The image processing algorithm research based on multiscale block compressed sensing[D]. Beijing: Beijing Institute of Technology, 2016.
高东红. 基于多尺度分块压缩感知的图像处理算法研究[D]. 北京: 北京理工大学, 2016.

【11】Li Y, Zhao R Z, Zhang F Z, et al. Adaptive multi-scale block compressed sensing algorithm based on edge and direction estimation[J]. Signal Processing, 2015, 31(4): 407-413.
李玉, 赵瑞珍, 张凤珍, 等. 边缘和方向估计的自适应多尺度分块压缩感知算法[J]. 信号处理, 2015, 31(4): 407-413.

【12】Antonini M, Barlaud M, Mathieu P, et al. Image coding using wavelet transform[J]. IEEE Transactions on Image Processing, 1992, 1(2): 205-220.

【13】Zhang X Q, Gu X D, Sun H X. Deblock algorithm for compressed image based on adaptive space domain filtering[J]. Computer Engineering, 2009, 35(4): 218-220.
张学全, 顾晓东, 孙辉先. 基于自适应空域滤波的图像去块效应算法[J]. 计算机工程, 2009, 35(4): 218-220.

【14】Piana M, Bertero M. Projected Landweber method and preconditioning[J]. Inverse Problems, 1997, 13(2): 441-463.

引用该论文

Cheng Deqiang,Shao Lirong,Li Yan,Guan Zenglun. Multi-Scale Block Adaptive Sampling Rate Compression Sensing Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031005

程德强,邵丽蓉,李岩,管增伦. 多尺度分块的自适应采样率压缩感知算法[J]. 激光与光电子学进展, 2019, 56(3): 031005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF