首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:32001--1)

基于改进灰狼算法的天波雷达定位模型

Sky-Wave Radar Location Model Based on Improved Grey Wolf Optimization Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对天波雷达方位分辨力低和传统解析算法定位误差较大的缺点, 提出一种混沌变异灰狼算法优化核极限学习机(KELM)的定位模型。首先, 该模型将分段线性混沌映射、自适应柯西变异和收敛因子的非线性化引入灰狼算法从而形成一种改进的灰狼算法; 然后, 采用改进后的灰狼算法对KELM的惩罚系数和核参数进行优化; 最后, 将优化后的KELM应用于天波雷达定位, 使建立的KELM定位模型具有更高的预测精度和更强的泛化能力。实验结果显示, 所提模型的预测结果与目标实测值基本一致, 预测精度高于标准灰狼优化算法改进的KELM模型和解析法定位模型, 为天波雷达定位提供了一种新的目标定位方法。

Abstract

Aimed at the disadvantages of the lower azimuth resolution of the sky-wave radar and larger position error of traditional analytic algorithm, a new locating model using chaotic mutation grey wolf optimization algorithm to optimize the kernel extreme learning machine (KELM) is put forward. First, the piecewise linear chaotic map, adaptive Cauchy mutation strategy and non-linearity of the convergence factor are introduced into the grey wolf optimization algorithm to form an improved grey wolf algorithm. Then, the improved grey wolf optimization algorithm is used to optimize penalty coefficient and kernel parameter of the KELM. Finally, the optimized the KELM is applied to sky-wave radar location, making the established KELM model have the high steady-state prediction accuracy and generalization performance. The experimental results show that the predicted results of the proposed model are basically consistent with the measured values, and the prediction accuracy is higher than that of the KELM location model, which is optimized by the standard grey wolf algorithm. A new target location method is provided for sky-wave radar.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.9

DOI:10.3788/lop56.032001

所属栏目:光计算

基金项目:国家自然科学基金(61170120)

收稿日期:2018-06-15

修改稿日期:2018-08-12

网络出版日期:2018-08-17

作者单位    点击查看

宋萍:江南大学物联网工程学院, 江苏 无锡 214122
刘以安:江南大学物联网工程学院, 江苏 无锡 214122

联系人作者:刘以安(Lya_wx@jiangnan.edu.cn)

【1】Guo X, Ni J L, Liu G S. Architecture and signal processing of sky wave over-the-horizon radar[J]. Radio Science, 2003, 38(5): 1-14.

【2】Song J, Zhao Z Y, Zhou C, et al. Study on sky-wave over-the-horizon location model of high frequency multistatic system[J]. Systems Engineering and Electronics, 2011, 33(2): 272-275.
宋君, 赵正予, 周晨, 等. 多基高频天波超视距定位模型[J]. 系统工程与电子技术, 2011, 33(2): 272-275.

【3】Kong R N, Cheng Y M, Liang Y, et al. Mode identification and location improvement based on data association of OTHR and azimuth-only sensors[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1061-1069.
孔若男, 程咏梅, 梁彦, 等. 基于OTHR与纯角度传感器群数据关联的模式辨识与定位精度提升[J]. 航空学报, 2012, 33(6): 1061-1069.

【4】Zhang X L. Application of passive TDOA location technology in HF radar[D]. Xi′an: Xidian University, 2013: 6-9.
张晓玲. 无源时差定位技术在高频雷达中的应用[D]. 西安: 西安电子科技大学, 2013: 6-9.

【5】Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.

【6】Zhang X M, Kang Q, Cheng J F, et al. A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer[J]. Applied Soft Computing, 2018, 67: 197-214.

【7】Ghebleh M, Kanso A, Stevanovi D. A novel image encryption algorithm based on piecewise linear chaotic maps and least squares approximation[J].Multimedia Tools and Applications, 2018, 77(6): 7305-7326.

【8】Zou Y N, Liu P X, Yang C S, et al. Collision detection for virtual environment using particle swarm optimization with adaptive cauchy mutation[J]. Cluster Computing, 2017, 20(2): 1765-1774.

【9】Kang L L, Dong W Y, Song W J, et al. Non-inertial opposition-based particle swarm optimization with adaptive elite mutation[J]. Journal on Communications, 2017, 38(8): 66-78.
康岚兰, 董文永, 宋婉娟, 等. 无惯性自适应精英变异反向粒子群优化算法[J]. 通信学报, 2017, 38(8): 66-78.

【10】Liu C A, Wang X P, Liu C Y, et al. Three-dimensional route planning for unmanned aerial vehicle based on improved grey wolf optimizer algorithm[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2017, 45(10): 38-42.
柳长安, 王晓鹏, 刘春阳,等. 基于改进灰狼优化算法的无人机三维航迹规划[J]. 华中科技大学学报(自然科学版), 2017, 45(10): 38-42.

【11】Bai J J, Sun Q, Jing S B, et al. Robust extreme learning machine and its application in analysis of near infrared spectroscopy data[J]. Laser & Optoelectronics Progress, 2015, 52(10): 103002.
白俊健, 孙群, 井诗博, 等. 稳健极限学习机及其在近红外光谱分析中的应用[J]. 激光与光电子学进展, 2015, 52(10): 103002.

【12】Zhang H D, Li G R, Li R C, et al. Determination of tea polyphenols content in puerh tea using nearinfrared spectroscopy combined with extreme learning machine and GA-PLS algorithm[J]. Laser & Optoelectronics Progress, 2013, 50(4): 043001.
张海东, 李贵荣, 李若诚, 等. 近红外光谱结合极限学习机和GA-PLS算法检测普洱茶茶多酚含量[J]. 激光与光电子学进展, 2013, 50(4): 043001.

【13】Xu Y, Wei Z Y. An improved traffic sign image recognition algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021001.
徐岩, 韦镇余. 一种改进的交通标志图像识别算法[J]. 激光与光电子学进展, 2017, 54(2): 021001.

【14】Wong C M, Vong C M, Wong P K, et al. Kernel-based multilayer extreme learning machines for representation learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(3): 757-762.

【15】Zhou C, Yin K L, Cao Y, et al. A novel method for landslide displacement prediction by integrating advanced computational intelligence algorithms[J]. Scientific Reports, 2018, 8: 7287.

引用该论文

Song Ping,Liu Yian. Sky-Wave Radar Location Model Based on Improved Grey Wolf Optimization Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(3): 032001

宋萍,刘以安. 基于改进灰狼算法的天波雷达定位模型[J]. 激光与光电子学进展, 2019, 56(3): 032001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF