首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:31006--1)

基于剪切波和改进Pal-King的医学图像增强算法研究

Medical Image Enhancement Algorithm Based on Shearlet Domain and Improve Pal-King Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在影像医学图像的诊断中, 为了能更好地挖掘出尽可能多的决策信息, 需要对图像进行有效的图像增强, 而传统的医学图像增强算法具有噪声和模糊性的缺点, 因此, 提出一种基于剪切波和改进Pal-King算法的图像增强算法。首先利用剪切波变换将图像分解为高频和低频两部分, 然后通过自适应阈值去噪的方法对图像进行有效去噪, 再使用剪切波反变换重构图像, 最后, 使用Pal-King算法对图像进行对比度增强, 以突出图像的细节信息。为了验证算法的有效性, 利用自建图片库将本文算法与剪切波、分数阶微分以及改进的Pal-King增强方法进行比较, 结果表明, 本文算法处理的图像在增强效果和对比度方面都有了显著的提高。

Abstract

In the process of diagnosis using medical image, it is necessary to do image enhancement efficiently in order to mine more information for decision-making as much as possible. However, the traditional medical image enhancement algorithm has some shortcomes, such as creating noise and fuzziness. Therefore, an image enhancement algorithm based on shearlet domain and improved Pal-King algorithm is proposed. First, the shearlet transform is used to decompose the image two parts, high frequency part and low frequency part. Then the adaptive threshold denoising method is used to denoise the image efficiently. After that, the inverse shear wave transform is used to reconstruct the image. Finally, Pal-King algorithm is used to enhance contrast to highlight the details of the image. In order to verify the validity of this algorithm, the processing results of the proposed algorithm are compared with shear wave, fractional differential and the improved Pal-King enhancement method respectively by using the self-built image database. Results show that both the enhancement effect and contrast of image by the proposed algorithm has significant improvements.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.031006

所属栏目:图像处理

基金项目:天津市自然科学基金(16JCYBJC15600)

收稿日期:2018-06-19

修改稿日期:2018-07-10

网络出版日期:2018-08-31

作者单位    点击查看

侯向丹:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401
郑梦敬:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401
刘洪普:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401
李柏岑:河北工业大学人工智能与数据科学学院, 天津 300401河北省大数据计算重点实验室, 天津 300401

联系人作者:刘洪普(liuii@scse.hebut.edu.cn)

【1】Fu X W, Ding M Y, Zhou C P, et al. Research on image enhancement algorithms of medical images based on quantum probability statistics[J]. Acta Electronica Sinica, 2010, 38(7): 1590-1596.
付晓薇, 丁明跃, 周成平, 等. 基于量子概率统计的医学图像增强算法研究[J]. 电子学报, 2010, 38(7): 1590-1596.

【2】Jiang B J,Zhong M X. Improved histogram equalization algorithm in the image enhancement[J]. Laser & Infrared, 2014, 44(6): 702-706.
姜柏军, 钟明霞. 改进的直方图均衡化算法在图像增强中的应用[J]. 激光与红外, 2014, 44(6): 702-706.

【3】Yang W M, Qin C, Wang X J, et al. Cross section binary coding for fusion of finger vein and finger dorsal texture[C]∥2016 IEEE International Conference on Industrial Technology (ICIT), 2016: 742-745.

【4】Ramponi G. A cubic unsharp masking technique for contrast enhancement[J]. Signal Processing, 1998, 67(2): 211-222.

【5】Ayiguli W, Jia Z H, Qin X Z, et al. Remote sensing image enhancement based on Shearlet transform and unsharp masking[J]. Computer Engineering and Design, 2015, 36(4): 987-990.
阿依古力·吾布力, 贾振红, 覃锡忠, 等. 基于剪切波变换的反锐化掩膜遥感图像增强[J]. 计算机工程与设计, 2015, 36(4): 987-990.

【6】Cao W, Wang H B, Shi J, et al. Enhancement algorithm of finger vein image based on weighted guided filter with edge detection[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021007.
曹伟, 王华彬, 石军, 等. 基于边缘检测加权引导滤波的指静脉图像增强算法[J]. 激光与光电子学进展, 2017, 54(2): 021007.

【7】Li Y, Zhang Y F, Zhang Q, et al. Infrared image contrast enhancement based on haze remove method[J]. Chinese Journal of Lasers, 2015, 42(1): 0113004.
李毅, 张云峰, 张强, 等. 基于去雾模型的红外图像对比度增强[J]. 中国激光, 2015, 42(1): 0113004.

【8】Wu Y Q, Shi J P. Image enhancement in non-subsampled contourlet transform domain based on multi-scale retinex[J]. Acta Optica Sinica, 2015, 35(3): 0310002.
吴一全, 史骏鹏. 基于多尺度Retinex的非下采样Contourlet域图像增强[J]. 光学学报, 2015, 35(3): 0310002.

【9】Zhou F,Jia Z H, Yang J, et al. Medical image enhancement method based on improved Gamma correction in Shearlet domain[J]. Journal of Optoelectronics·Laser, 2017, 28(5): 566-572.
周飞, 贾振红, 杨杰, 等. 基于剪切波域改进Gamma校正的医学图像增强算法[J]. 光电子·激光, 2017, 28(5): 566-572.

【10】Guo K H, Labate D. Optimally sparse multidimensional representation using shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298-318.

【11】Jia W, Yang J Y, Liu Y B, et al. Improved fast image enhancement algorithm based on fuzzy set theory[C]∥2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, 2014: 173-175.

【12】Zhang L T, Sun Y Q, Chen F S. An improved edge detection algorithm based on fuzzy theory[C]∥2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2015: 380-384.

【13】Xu Z G, Zhang S, Wang J J. Application of fuzzy enhancement in moving object detection and tracking[C]∥2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2016: 1-6.

【14】Wang Y H, Li D H, Xu Y N. An improved image enhancement algorithm based on fuzzy sets[C]∥IEEE Conference Anthology, 2013: 1-4.

【15】Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.

【16】Zhao J. Fractional differential and its application in image texture enhancement[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(1): 121-124.
赵建. 分数阶微分在图像纹理增强中的应用[J]. 液晶与显示, 2012,27(1): 121-124.

【17】Chen X Y, Tan L J. Medical image enhancement algorithm based on adaptive fractional order differentiation[J]. Application Research of Computers, 2017, 34(12): 3895-3898,3903.
陈向阳, 谭礼健. 基于自适应分数阶微分的医学图像增强算法[J]. 计算机应用研究, 2017, 34(12): 3895-3898,3903.

【18】Shi D, Li Q W, Fan X N, et al. Underwater image enhancement algorithm based on contourlet transform and multi-scale retinex[J]. Laser & Optoelectronics Progress, 2010, 47(4): 041001.
石丹, 李庆武, 范新南, 等. 基于Contourlet变换和多尺度Rentinex的水下图像增强算法[J]. 激光与光电子学进展, 2010, 47(4): 041001.

【19】Wen H B, Bi D Y, Ma S P, et al. Variational retinex algorithm for infrared image enhancement with staircase effect suppression and detail enhancement[J]. Acta Optica Sinica, 2016, 36(9): 0911005.
温海滨, 毕笃彦, 马时平, 等. 消除阶梯效应与增强细节的变分Retinex红外图像增强算法[J]. 光学学报, 2016, 36(9): 0911005.

引用该论文

Hou Xiangdan,Zheng Mengjing,Liu Hongpu,Li Bocen. Medical Image Enhancement Algorithm Based on Shearlet Domain and Improve Pal-King Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031006

侯向丹,郑梦敬,刘洪普,李柏岑. 基于剪切波和改进Pal-King的医学图像增强算法研究[J]. 激光与光电子学进展, 2019, 56(3): 031006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF