首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:30602--1)

基于选择性平均阈值的分布式光纤自来水管泄漏检测定位及实验分析

Experimental Analysis and Leakage Location Detection of Tap Water Pipe Based on Distributed Optical Fiber with Selective Average Threshold

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于拉曼散射和光时域反射技术的结合, 利用分布式光纤对自来水管道进行泄漏检测和定位模拟实验, 分别在自来水管无泄漏和有微小泄漏的情况下, 通过分布式光纤传感器获取温度检测信号。实验时, 利用绝对距离法对温度检测信号进行聚类分析, 识别聚乙烯(PE)自来水管有无泄漏发生, 再对无泄漏信号利用选择性平均阈值法确定阈值信号, 并通过检测信号和阈值信号的差值信号识别PE自来水管泄漏点位置。结果表明, 该系统运行稳定, 且能够准确识别自来水管泄漏情况, 使用选择性平均阈值法能够准确定位泄漏点。

Abstract

Based on the combination of Raman scattering and optical time domain reflection techniques, the distributed optical fiber is used for the simulation experiment of leakage detection and location of tap water pipes. The temperature detection signal is obtained under no leakage or slight leakage of a tap water pipe by a distributed optical fiber sensor. In the experiment, the absolute distance method is firstly used for clustering the temperature detection signals to identify whether there is leakage in the tap water pipe or not. Then, as for the no-leakage signals, a selective average threshold method is used for the determination of a threshold signal. Finally, the difference signal between the detection signal and the threshold signal is used for the identification of leakage location of a tap water pipe. The results show that the whole system is stable and can be used to accurately identify the leakage of tap water pipes. Moreover, the use of the selective average threshold method can accurately locate the leakage point.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/lop56.030602

所属栏目:光纤光学与光通信

基金项目:国家重点研发计划(2016YFC0400603)

收稿日期:2018-06-22

修改稿日期:2018-07-25

网络出版日期:2018-08-23

作者单位    点击查看

赵亚:中国计量大学质量与安全工程学院, 浙江 杭州 310018
王强:中国计量大学质量与安全工程学院, 浙江 杭州 310018
凌张伟:浙江省特种设备检验研究院, 浙江 杭州 310018浙江省特种设备安全检测技术研究重点实验室, 浙江 杭州 310018

联系人作者:王强(qiangwang@cjlu.edu.cn)

【1】Niklès M, Vogel B H, Briffod F, et al. Leakage detection using fiber optics distributed temperature monitoring[C]∥Smart Structures and Materials 2004: Smart Sensor Technology and Measurement Systems. International Society for Optics and Photonics, 2004, 5384: 18-26.

【2】Mirzaei A, Bahrampour A R, Taraz M, et al. Transient response of buried oil pipelines fiber optic leak detector based on the distributed temperature measurement[J]. International Journal of Heat and Mass Transfer, 2013, 65: 110-122.

【3】Lombera R R, Serrano J M, Martinez O, et al. Experimental demonstration of a leakage monitoring system for large diameter water pipes using a fiber optic distributed sensor system[C]∥IEEE International Conference on Sensors, 2014: 1885-1888.

【4】Apperl B, Pressl A, Schulz K. Feasibility of locating leakages in sewage pressure pipes using the distributed temperature sensing technology[J]. Water, Air, & Soil Pollution, 2017, 228: 82.

【5】Zhang S F, Xie X F. Application of ground penetrating radar in leak detection of water pipelines[J]. Guangdong Architecture Civil Engineering, 2008 (6): 58-59,57.
张树风, 谢晓锋. 探地雷达在自来水管道泄漏探测中的应用[J]. 广东土木与建筑, 2008(6): 58-59.57.

【6】Liu L, Yu M, Yang R J, et al. Wavelet denoising applied in optical fiber Raman temperature sensor system[J]. Chinese Journal of Lasers, 2013, 40(6): 0605005.
刘磊, 于淼, 杨瑞娟, 等. 小波去噪用于光纤拉曼温度传感系统[J]. 中国激光, 2013,40(6): 0605005.

【7】Xiang J, Liu B F, Li Y. Research of noise signal processing in fiber optic distributed temperature measurement system based on wavelet[J]. Modern Instruments, 2011, 17(1): 47-49,44.
向进, 刘波峰, 李亚. 基于小波的分布式光纤测温系统中噪声信号处理研究[J]. 现代仪器, 2011,17(1): 47-49,44.

【8】Yang Y H, Yang W, Jiang T, et al. Investigation on characteristics of stimulated Raman threshold in a single mode fiber[J]. Acta Optica Sinica, 2014, 34(1): 0129001.
杨远洪, 杨巍, 蒋婷, 等. 单模光纤中受激拉曼散射的阈值特性研究[J]. 光学学报, 2014, 34(1): 0129001.

【9】Huang X, Gan X Q, Li Q, et al. Application of distributed optical fiber temperature measuring system based on Raman scattering[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(2): 92-96.
黄祥, 甘孝清, 李强, 等. 基于拉曼散射的分布式光纤测温系统应用研究[J]. 长江科学院院报, 2013, 30(2): 92-96.

【10】Shan Y F, Ma Y J, Fu H,et al. Application of distributed optical fiber temperature measurement system in coal mine fire monitoring system[J]. Chinese Journal of Sensors and Actuators, 2014, 27(5): 704-708.
单亚锋, 马艳娟, 付华, 等. 分布式光纤测温系统在煤矿火灾监测中的应用[J]. 传感技术学报, 2014, 27(5): 704-708.

【11】Zhang M J, Li J, Liu Y, et al. Temperature demodulation method for distributed optical fiber Raman temperature measurement [J].Chinese Journal of Lasers, 2017, 44 (3): 0306002.
张明江, 李健, 刘毅,等. 面向分布式光纤拉曼测温的新型温度解调方法[J]. 中国激光, 2017,44(3): 0306002.

【12】Zhou Z C, Wang X L, Su R T, et al. The application of distributed fiber sensing in fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080006.
周子超, 王小林, 粟荣涛, 等. 分布式光纤传感在光纤激光中的应用研究[J]. 激光与光电子学进展, 2016, 53(8): 080006.

【13】Tong J K, Jin B Q, Wang D, et al. Distributed optical fiber temperature measurement system for pipeline safety monitoring based on R-OTDR[J]. Chinese Journal of Sensors and Actuators, 2018, 31(1): 158-162.
佟敬阔, 靳宝全, 王东, 等. 面向管道安全监测的R-OTDR分布式光纤测温系统[J]. 传感技术学报, 2018, 31(1): 158-162.

【14】Han L J, Wang Q, Fan X W, et al. Underwater gas pipeline leakage diagnostic method by distributed optical fiber sensor based on SPE[J]. Laser & Optoelectronics Progress, 2016, 53(5): 052801.
韩玲娟, 王强, 范昕炜, 等. 分布式光纤传感水下天然气管道泄漏的SPE诊断法[J]. 激光与光电子学进展, 2016, 53(5): 052801.

【15】Wang P, Lou S Q, Liang S, et al. Selective average based threshold algorithm for -OTDR distributed fiber-optic sensing system [J].Infrared and Laser Engineering, 2016, 45 (3): 322003.
王鹏, 娄淑琴, 梁生,等. 选择性平均的-OTDR分布式光纤扰动传感系统阈值算法[J]. 红外与激光工程, 2016, 45(3): 322003.

引用该论文

Zhao Ya,Wang Qiang,Ling Zhangwei. Experimental Analysis and Leakage Location Detection of Tap Water Pipe Based on Distributed Optical Fiber with Selective Average Threshold[J]. Laser & Optoelectronics Progress, 2019, 56(3): 030602

赵亚,王强,凌张伟. 基于选择性平均阈值的分布式光纤自来水管泄漏检测定位及实验分析[J]. 激光与光电子学进展, 2019, 56(3): 030602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF