首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:31102--1)

一种面向颜色校正的拼接图像质量评价方法

A Stitched Image Quality Assessment Method for Color Correction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了更好地设计和评估图像拼接算法, 提出一种面向颜色校正的拼接图像质量评价方法。该方法利用现有的颜色校正算法和拼接算法建立了含有5种色差的拼接图像库; 分别从拼接前图像序列和拼接图像中提取4个特征, 将4个特征进行融合后, 通过支持向量回归算法建立特征与质量之间的关系模型, 预测色差拼接图像质量。实验结果表明, 所提方法可以有效评估色差拼接图像的质量。

Abstract

In order to evaluate and design the stitching algorithm better, a color-corrected stitched image quality assessment method is proposed. A stitched image database with five kinds of color differences is established by using the current color correction algorithm and stitching algorithm. To evaluate color-difference stitched images quality comprehensively, four features are extracted from pre-splicing image sequence and stitched image respectively. Then four features are combined to establish a relation model between features and quality through support vector regression algorithm, so as to predict color-difference stitched image quality. Experimental result shows that the proposed method can effectively evaluate color-difference stitched images quality.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.031102

所属栏目:成像系统

基金项目:国家自然科学基金(61622109)

收稿日期:2018-07-27

修改稿日期:2018-08-20

网络出版日期:2018-08-28

作者单位    点击查看

齐美玲:宁波大学信息科学与工程学院, 浙江 宁波 315211
邵枫:宁波大学信息科学与工程学院, 浙江 宁波 315211

联系人作者:邵枫(shaofeng@nbu.edu.cn)

【1】Bang S, Kim H, Kim H. UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching[J]. Automation in Construction, 2017, 84: 70-80.

【2】Chen H X, Duan M J. Clinical application and value analysis of digital radiography (DR) image stitching technique in orthopedics[J]. Journal of Imaging Research and Medical Applications, 2018, 2(1): 46-47.
陈红霞, 段敏俊. 数字X线摄影(DR)图像拼接技术在骨科的临床应用及价值分析[J]. 影像研究与医学应用, 2018, 2(1): 46-47.

【3】Gao L L, Liu J J, Ren X, et al. Image quality evaluation of panoramic camera steropair based on structural similarity[J]. Laser & Optoelectronics Progress, 2014, 51(7): 071004.
高露露, 刘建军, 任鑫, 等. 基于结构相似度的全景相机立体像对图像质量评价[J]. 激光与光电子学进展, 2014, 51(7): 071004.

【4】Zhao T, Kang H L, Zhang Z P. Fast image mosaic algorithm based on area blocking and BRISK[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031005.
赵婷, 康海林, 张正平. 结合区域分块的快速BRISK图像拼接算法[J]. 激光与光电子学进展, 2018, 55(3): 031005.

【5】Wu W S, Feng H J, Xu Z H, et al. Optical image mosaic methods based on MEMS gyroscope[J]. Acta Photonica Sinica, 2018, 47(3): 0310001.
伍文双, 冯华君, 徐之海, 等. 基于MEMS陀螺仪的光学图像拼接[J]. 光子学报, 2018, 47(3): 0310001.

【6】Paalanen P, Kmrinen J K, Klviinen H. Image based quantitative mosaic evaluation with artificial video[C]∥Scandinavian Conference on Image Analysis (SCIA), 2009: 470-479.

【7】Xu W, Mulligan J. Performance evaluation of color correction approaches for automatic multi-view image and video stitching[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 263-270.

【8】Cheung G, Yang L Y, Tan Z G, et al. A content-aware metric for stitched panoramic image quality assessment[C]∥IEEE International Conference on Computer Vision Workshops (ICCVW), 2017: 2487-2494.

【9】Qureshi H S, Khan M M, Hafiz R, et al. Quantitative quality assessment of stitched panoramic images [J]. IET Image Processing, 2012, 6(9): 1348-1358.

【10】Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.

【11】Kim S J, Pollefeys M. Robust radiometric calibration and vignetting correction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 562-576.

【12】Zhou M, Jin K, Wang S Z, et al. Color retinal image enhancement based on luminosity and contrast adjustment[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(3): 521-527.

【13】Fecker U, Barkowsky M, Kaup A. Histogram-based prefiltering for luminance and chrominance compensation of multiview video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9): 1258-1267.

【14】He L, Qi H R, Zaretzki R. Image color transfer to evoke different emotions based on color combinations[J]. Signal, Image and Video Processing, 2015, 9(8): 1965-1973.

【15】Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images[J]. IEEE Computer Graphics and Applications, 2001, 21(5): 34-41.

【16】Xiao X, Ma L. Color transfer in correlated color space[C]∥ACM International Conference on Virtual Reality Continuum and its Applications (VRCIA), 2006: 305-309.

【17】Chang C H, Sato Y, Chuang Y Y. Shape-preserving half-projective warps for image stitching[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CCVPR), 2014: 3254-3261.

【18】International Telecommunication Union. ITU-R BT.500-11 methodology for the subjective assessment of the quality of television pictures[S]. Geneva: International Telecommunication Union, 2002.

【19】Zhang Y J, Li S M, Wei J J, et al. Subjective quality evaluation method of stereo image[J]. Acta Photonica Sinica, 2012, 41(5): 602-607.
张英静, 李素梅, 卫津津, 等. 立体图像质量的主观评价方案[J]. 光子学报, 2012, 41(5): 602-607.

【20】Seshadrinathan K, Soundararajan R, Bovik A C, et al. Study of subjective and objective quality assessment of video[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1427-1441.

【21】Li L D, Xia W H, Fang Y M, et al. Color image quality assessment based on sparse representation and reconstruction residual[J]. Journal of Visual Communication and Image Representation, 2016, 38: 550-560.

【22】Chang H W, Yang H, Gan Y, et al. Sparse feature fidelity for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2013, 22(10): 4007-4018.

【23】Zhang L, Zhang L, Mou X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.

【24】Chu J, Chen Q, Yang X C. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014, 31(1): 13-22.
褚江, 陈强, 杨曦晨. 全参考图像质量评价综述[J]. 计算机应用研究, 2014, 31(1): 13-22.

【25】Yang C C, Kwok S H. Efficient gamut clipping for color image processing using LHS and YIQ[J]. Optical Engineering, 2003, 42(3): 701-711.

【26】Liu C, Yuen J, Torralba A. SIFT flow: dense correspondence across scenes and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978-994.

【27】Schlkopf B, Platt J, Hofmann T. Graph-based visual saliency[C]∥International Conference on Neural Information Processing Systems (NIPS), 2006: 545-552.

【28】Zhang L, Shen Y, Li H Y. VSI: a visual saliency-induced index for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4270-4281.

【29】Geusebroek J M, van den Boomgaard R, Smeulders A W M, et al. Color invariance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(12): 1338-1350.

【30】Geusebroek J M, van den Boomgaard R, Smeulders A W M, et al. Color and scale: the spatial structure of color images[C]∥European Conference on Computer Vision (ECCV), 2000: 331-341.

引用该论文

Qi Meiling,Shao Feng. A Stitched Image Quality Assessment Method for Color Correction[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031102

齐美玲,邵枫. 一种面向颜色校正的拼接图像质量评价方法[J]. 激光与光电子学进展, 2019, 56(3): 031102

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF