首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:30605--1)

基于啁啾光纤布拉格光栅的可调谐双通带微波光子滤波器

Tunable Dual-Bandpass Microwave Photonic Filter Based on Chirped Fiber Bragg Grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于啁啾光纤布拉格光栅(CFBG)的可调谐双通带微波光子滤波器(MPF)结构, 并对该结构进行了实验验证。利用两个级联的拥有不同中心反射波长、带宽及啁啾率的CFBGs, 对已调制的光信号产生不同延时, 获得了两个不同的频率通带。基于此, 通过调整马赫-曾德尔干涉仪(MZI)中的可调谐光延迟线, 改变MPF的自由频谱范围, 可实现两个通带中心频率的调谐。实验中获得的中心频率分别为6.75 GHz和16.07 GHz的频率通带。通过调节MZI两臂的臂长差, 实现了MPF中心频率的调谐。所提出的双通带MPF结构简单, 具有很好的可调谐性和稳定性。

Abstract

A structure of tunable dual-bandpass microwave photonic filter (MPF) based on chirped fiber Bragg grating (CFBG) is proposed and experimentally demonstrated. By using two cascaded CFBGs with different central reflection wavelengths, bandwidths and chirp parameters, and the different delays of the modulated light signal in this structure are introduced. Consequently, two different frequency passbands are realized. On this basis, by adjusting the variable optical delay line in Mach-Zehnder interferometer (MZI) to change the free spectral range of MPF, the central frequencies of the two passbands can be tuned. Two different passbands with the central frequencies of 6.75 GHz and 16.07 GHz are obtained in the experiment. By adjusting the optical path difference between the two arms of MZI, the tuning of the central frequency of MPF is achieved. The proposed dual-bandpass MPF has a simple structure and is of good tunability and stability.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29

DOI:10.3788/lop56.030605

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金青年基金(61701532)、湖北省自然科学基金(2018CFB539, 2018CFB411, 2018CFB331)

收稿日期:2018-07-19

修改稿日期:2018-08-19

网络出版日期:2018-08-29

作者单位    点击查看

赵彪:空军预警学院一系, 湖北 武汉 430019
杜鹏飞:空军预警学院一系, 湖北 武汉 430019
沃江海:空军预警学院一系, 湖北 武汉 430019
丛雯珊:空军预警学院一系, 湖北 武汉 430019
张钧凯:空军预警学院一系, 湖北 武汉 430019
余岚:空军预警学院一系, 湖北 武汉 430019

联系人作者:沃江海(jianghai_wo@163.com)

【1】Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.

【2】Minasian R A. Photonic signal processing of microwave signals[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 832-846.

【3】Capmany J, Mora J, Gasulla I, et al. Microwave photonic signal processing[J]. Journal of Lightwave Technology, 2013, 31(4): 571-586.

【4】Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters[J]. Journal of Lightwave Technology, 2006, 24(1): 201-229.

【5】Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.

【6】He Y T, Jiang Y, Zi Y J, et al. Frequency doubled triangular waveform generation based on injection locking and time-domain synthesis[J]. Chinese Journal of Lasers, 2018, 45(1): 0101005.
何禹彤, 江阳, 訾月姣, 等. 基于注入锁定和时域综合的倍频三角波产生技术[J]. 中国激光, 2018, 45(1): 0101005.

【7】Yuan M Y, Liu B, Wang T L, et al. Sawtooth waveform generation based on two parallel Mach-Zehnder modulators[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070701.
袁牧野, 刘波, 王天亮, 等. 基于并联马赫-曾德尔调制器的锯齿波生成方法[J]. 激光与光电子学进展, 2018, 55(7): 070701.

【8】Cong W S, Yu L, Wo J H, et al. Photonic approach of generating phase-coded signal with tunable frequency multiplication factor based on cascaded MZMs[J]. Acta Optica Sinica, 2018, 38(4): 0432001.
丛雯珊, 余岚, 沃江海, 等. 基于级联MZMs倍频系数可调的相位编码信号光产生方法[J]. 光学学报, 2018, 38(4): 0432001.

【9】Lin T, Zhao S H, Zhu Z H, et al. Multi-band frequency conversion scheme based on single optical frequency comb for satellite communication[J]. Acta Optica Sinica, 2017, 37(6): 0623002.
林涛, 赵尚弘, 朱子行, 等. 基于单光频梳的卫星通信多频段变频方法[J]. 光学学报, 2017, 37(6): 0623002.

【10】Mora J, Ortega B, Diez A, et al. A single bandpass tunable photonic transversal filter based on a broadband optical source and a Mach-Zehnder interferometer[C]∥International Topical Meeting on Microwave Photonics, 2003: 251-254.

【11】Mora J, Ortega B, Diez A, et al. Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 2006, 24(7): 2500-2509.

【12】Li W Z, Li M, Yao J P. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1287-1296.

【13】Wang Q, Shen Y Y, Xu E M, et al. A single-passband microwave photonic filter with a wide tunable range based on a chirped phase-shifted FBG[J]. Journal of Optoelectronics·Laser, 2015, 26(7): 1248-1254.
王棋, 沈园园, 徐恩明, 等. 基于啁啾相移FBG的宽调谐单通带微波光子滤波器[J]. 光电子·激光, 2015, 26(7): 1248-1254.

【14】Wang W X, Tao J, Huang L. Narrowband tunable microwave photonic filter based on Fabry-Perot laser with optical injection[J]. Chinese Journal of Lasers, 2017, 44(10): 1006002.
王文轩, 陶继, 黄龙. 基于光注入法布里-珀罗激光器的窄带可调谐微波光子滤波器[J]. 中国激光, 2017, 44(10): 1006002.

【15】Li Y D, Wang R, Pu T, et al. Review on high out-of-band suppression ratio of microwave photonic filter[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020005.
李元栋, 王荣, 蒲涛, 等. 高带外抑制比微波光子滤波器研究进展[J]. 激光与光电子学进展, 2018, 55(2): 020005.

【16】Xu Z W, Fu H Y, Chen H, et al. A tunable dual-passband microwave photonic filter based on optical slicing and dual-path fiber delay lines[J]. Optics Communications, 2015, 346: 10-14.

【17】Wu R, Chen H, Zhang S W, et al. A switchable and tunable dual-passband microwave photonic filter[C]. Progress in Electromagnetic Research Symposium, 2016: 1588-1591.

【18】Xu Z W, Fu H Y, Chen H, et al. Microwave photonic filter with two independently tunable passbands based on paralleled fiber Mach-Zehnder interferometers and dispersive medium[J]. Applied Physics B, 2015, 120(3): 557-562.

【19】Han X Y, Xu E M, Liu W L, et al. Tunable dual-passband microwave photonic filter using orthogonal polarization modulation[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2209-2212.

【20】Gao L, Zhang J J, Chen X F, et al. Microwave photonic filter with two independently tunable passbands using a phase modulator and an equivalent phase-shifted fiber Bragg grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(2): 380-387.

【21】Li J Q, Xiao Y C, Dong W, et al. Dual-band bandpass tunable microwave photonic filter based on stimulated Brillouin scattering[J]. Optoelectronics Letters, 2016, 12(4): 276-279.

【22】Hu S L, Li L W, Yi X K, et al. Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2017, 29(3): 330-333.

【23】Fu H Y, Zhu K, Ou H Y, et al. A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach-Zehnder interferometer and phase modulation[J]. Optics & Laser Technology, 2010, 42(1): 81-84.

【24】Lee J H, Chang Y M. Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum[J]. Journal of Lightwave Technology, 2008, 26(15): 2619-2628.

引用该论文

Zhao Biao,Du Pengfei,Wo Jianghai,Cong Wenshan,Zhang Junkai,Yu Lan. Tunable Dual-Bandpass Microwave Photonic Filter Based on Chirped Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2019, 56(3): 030605

赵彪,杜鹏飞,沃江海,丛雯珊,张钧凯,余岚. 基于啁啾光纤布拉格光栅的可调谐双通带微波光子滤波器[J]. 激光与光电子学进展, 2019, 56(3): 030605

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF