首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:30001--1)

基于受激布里渊散射效应的硫系玻璃光器件研究进展

Research Progress on Chalcogenide Glass Photonic Devices Based on Stimulated Brillouin Scattering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

硫系玻璃具有较宽的红外透过范围及极高的线性和非线性折射率。综述了基于受激布里渊散射效应的硫系玻璃光器件研究进展, 以及硫系光纤和波导器件在布里渊激光器、慢光产生和微波光子滤波器等领域的应用现状, 指出了研究中存在的问题, 并展望了其发展前景。

Abstract

Chalcogenide glasses (ChGs) have a very wide range of infrared transmittance, extremely high linear and nonlinear refractive index. In this article, research progress on ChG photonic devices based on stimulated Brillouin scattering is reviewed, as well as applications of ChG fibers and waveguides in Brillouin fibers lasers, slow light generation, and microwave photonic filters. Moreover, current problems are summarized, and their potential developments are discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437.2

DOI:10.3788/lop56.030001

所属栏目:综述

基金项目:国家自然科学基金(61875094)、中国博士后基金(2018M642386)、宁波大学王宽诚幸福基金

收稿日期:2018-09-25

修改稿日期:2018-12-04

网络出版日期:2018-12-06

作者单位    点击查看

戴世勋:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
王莹莹:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
李杏:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
杨佩龙:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
张培晴:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
王训四:宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
义理林:上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240

联系人作者:戴世勋(daishixun@nbu.edu.cn)

【1】Agrawal G P. Nonlinear fiber optics[J]. Cambridge: Academic Press, 2007.

【2】Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541.

【3】Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 1972, 11(11): 2489-2494.

【4】Tkach R W, Chraplyvy A R, Derosier R M. Spontaneous Brillouin scattering for single-mode optical-fibre characterisation[J]. Electronics Letters, 1986, 22(19): 1011-1013.

【5】Ferreira M F. Impact of stimulated Brillouin scattering in optical fibers with distributed gain[J]. Journal of Lightwave Technology, 1995, 13(8): 1692-1697.

【6】Yeniay A, Delavaux J M, Toulouse J. Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers[J]. Journal of Lightwave Technology, 2002, 20(8): 1425-1432.

【7】Mountfort F H, Yoo S, Boyland A J, et al. Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers[C]∥Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, 2011: CE_P23.

【8】Levy S, Lyubin V, Klebanov M, et al. Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides[J]. Optics Letters, 2012, 37(24): 5112-5114.

【9】Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2010, 2(1): 1-59.

【10】Shen Y C, Song M P, Zhang X M, et al. Analysis and measurement of stimulated Brillouin scattering threshold in single mode fiber[J]. Chinese Journal of Lasers, 2005, 32(4): 497-500.
沈一春, 宋牟平, 章献民, 等. 单模光纤中受激布里渊散射阈值研究[J]. 中国激光, 2005, 32(4): 497-500.

【11】Chraplyvy A R. Limitations on lightwave communications imposed by optical-fiber nonlinearities[J]. Journal of Lightwave Technology, 1990, 8(10): 1548-1557.

【12】Hu K, Kabakova I V, Büttner T F S, et al. Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber[J]. Optics Letters, 2014, 39(16): 4651-4654.

【13】Geng J H, Staines S, Wang Z L, et al. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1813-1815.

【14】Philippov V, Codemard C, Jeong Y, et al. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Optics Letters, 2004, 29(22): 2590-2592.

【15】Zhan L, Gu Z C, Xing L, et al. Advances of fiber Brillouin lasers and amplifiers and their applications[J]. Chinese Journal of Lasers, 2010, 37(4): 901-911.
詹黎, 顾照昶, 邢亮, 等. 光纤布里渊激光器和放大器的研究进展及其应用[J]. 中国激光, 2010, 37(4): 901-911.

【16】Song K Y, Abedin K S, Hotate K, et al. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber[J]. Optics Express, 2006, 14(13): 5860-5865.

【17】Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2015, 2(2): 76-83.

【18】Wei W, Yi L L, Jaoun Y, et al. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber[J]. Optics Express, 2014, 22(19): 23249-23260.

【19】Korb C L, Gentry B M, Li S X, et al. Theory of the double-edge technique for Doppler lidar wind measurement[J]. Applied Optics, 1998, 37(15): 3097-3104.

【20】Chin S, Thévenaz L, Sancho J, et al. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers[J]. Optics Express, 2010, 18(21): 22599-22613.

【21】Thielen P A, Shaw L B, Pureza P C, et al. Small-core As-Se fiber for Raman amplification[J]. Optics Letters, 2003, 28(16): 1406-1408.

【22】Abedin K S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 2005, 13(25): 10266-10271.

【23】Abedin K S. Single-frequency Brillouin lasing using single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 2006, 14(9): 4037-4042.

【24】Wang Z B, Shao B B, Zhang L, et al. Analysis and measurement of stimulated Brillouin scattering threshold in fiber[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090603.
王振宝, 邵碧波, 张磊, 等. 光纤受激布里渊散射阈值分析与实验研究[J]. 激光与光电子学进展, 2011, 48(9): 090603.

【25】Abedin K S. Stimulated Brillouin scattering in single-mode tellurite glass fiber[J]. Optics Express, 2006, 14(24): 11766-11772.

【26】Florea C, Bashkansky M, Dutton Z, et al. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers[J]. Optics Express, 2006, 14(25): 12063-12070.

【27】Ahmad H, Shahi S, Harun S W. Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser[J]. Laser Physics, 2010, 20(3): 716-719.

【28】Ogusu K, Li H P, Kitao M. Brillouin-gain coefficients of chalcogenide glasses[J]. Journal of the Optical Society of America B, 2004, 21(7): 1302-1304.

【29】Sonehara T, Kaminaga H, Tatsu E, et al. Frequency-modulated stimulated Brillouin spectroscopy in high-refractive-index glasses[J]. Journal of Non-Crystalline Solids, 2008, 354(15/16): 1768-1773.

【30】Beugnot J C, Ahmad R, Rochette M, et al. Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires[J]. Optics Letters, 2014, 39(3): 482-485.

【31】Fortier C, Fatome J, Pitois S, et al. Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber[J]. Optics Express, 2008, 16(13): 9398-9404.

【32】Tow K H, Léguillon Y, Besnard P, et al. Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber[J]. Proceedings of SPIE, 2012, 8426: 842611.

【33】Cherif R, Salem A B, Zghal M. Full modal analysis of the stimulated Brillouin scattering in As2Se3 chalcogenide photonic crystal fiber[J]. Proceedings of SPIE, 2011, 8073: 80732R.

【34】Abidi I, Cherif R, Zghal M. Enhanced stimulated Brillouin scattering in chalcogenide elliptical photonic crystal fibres[J]. Proceedings of SPIE, 2015,9347: 934719.

【35】Chen X, Xia L, Li W, et al. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber[J]. Chinese Optics Letters, 2017, 15(4): 042901.

【36】Xu Q, Gao W Q, Li X, et al. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core microstructured optical fibers[J]. Optik, 2017, 133: 51-59.

【37】Cheng T L, Liao M S, Gao W Q, et al. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber[J]. Optics Express, 2012, 20(27): 28846-28854.

【38】Tow K H, Léguillon Y, Besnard P, et al. Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber[J]. Optics Letters, 2012, 37(7): 1157-1159.

【39】Tow K H, Leguillon Y, Fresnel S, et al. Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser[J]. IEEE Photonics Technology Letters, 2013, 25(3): 238-241.

【40】Florea C, Bashkansky M, Sanghera J, et al. Slow-light generation through Brillouin scattering in As2S3 fibers[J]. Optical Materials, 2009, 32(2): 358-361.

【41】Sinha R K, Kumar A, Saini T S. Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 4900706.

【42】Büttner T F S, Kabakova I V, Hudson D D, et al. Phase-locking and pulse generation in multi-frequency brillouin oscillator via four wave mixing[J]. Scientific Reports, 2015, 4: 5032.

【43】Pant R, Poulton C G, Choi D Y, et al. On-chip stimulated Brillouin scattering[J]. Optics Express, 2011, 19(9): 8285-8290.

【44】Pant R, Li E, Choi D Y, et al. Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation[J]. Optics Letters, 2011, 36(18): 3687-3689.

【45】Kabakova I V, Pant R, Choi D Y, et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip[J]. Optics Letters, 2013, 38(17): 3208-3211.

【46】Büttner T F S, Merklein M, Kabakova I V, et al. Phase-locked, chip-based, cascaded stimulated Brillouin scattering[J]. Optica, 2014, 1(5): 311-314.

【47】Pant R, Marpaung D, Kabakova I V, et al. On-chip stimulated Brillouin Scattering for microwave signal processing and generation[J]. Laser & Photonics Reviews, 2014, 8(5): 653-666.

【48】Merklein M, Casas-Bedoya A, Marpaung D, et al. Stimulated brillouin scattering in photonic integrated circuits: novel applications and devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 6100111.

【49】Yi L L, Wei W, Jaoun Y, et al. Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering[J]. Journal of Lightwave Technology, 2016, 34(2): 669-675.

【50】Zhang W W, Minasian R A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2011, 23(23): 1775-1777.

【51】Xing C, Ke C J, Zhang K, et al. Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement[J]. Optics Express, 2017, 25(18): 20969-20982.

【52】Byrnes A, Pant R, Li E B, et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering[J]. Optics Express, 2012, 20(17): 18836-18845.

【53】Morrison B, Marpaung D, Pant R, et al. Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering[J]. Optics Communications, 2014, 313: 85-89.

引用该论文

Dai Shixun,Wang Yingying,Li Xing,Yang Peilong,Zhang Peiqing,Wang Xunsi,Yi Lilin. Research Progress on Chalcogenide Glass Photonic Devices Based on Stimulated Brillouin Scattering[J]. Laser & Optoelectronics Progress, 2019, 56(3): 030001

戴世勋,王莹莹,李杏,杨佩龙,张培晴,王训四,义理林. 基于受激布里渊散射效应的硫系玻璃光器件研究进展[J]. 激光与光电子学进展, 2019, 56(3): 030001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF