首页 > 论文 > 量子光学学报 > 24卷 > 4期(pp:391-397)

多模式原子干涉仪在第一个周期之后关闭谐振子势阱的整体动力学研究

The Dynamics of the Multi-mode Atom Interferometer with Harmonic Potential well Closed After the First Period

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用Feynman路径积分的方法,研究了第一个周期之后关闭谐振子势阱对多模式原子干涉仪动力学特性的影响机制。第一次Kapitza-Dirac脉冲产生出大量具有不同幅度值的模式。脉冲的强度决定了每个模式的幅度值以及模式的总数。外场的作用使这些模式的演化路径相对于没有外场情况下的路径发生偏离。 在第二次Kapitza-Dirac脉冲后关闭谐振子势阱,外场作用使不同模式的运动路径再次发生偏移,同时对测量时刻态密度的分布产生影响。当外场为重力场时,关闭谐振子势阱后测量精度随模式数的增加而增加,理论估算可以达到10-9。

Abstract

Using the Feynman path integral,the influence of closing harmonic potential well after the second Kapitza-Dirac pulse on the dynamic evolution of multi-mode atom interferometer is investigated.Several spatially addressable modes with different amplitudes are created by the first Kapitza-Dirac pulse.The intensity of the pulse determines the magnitude of each model and the total number of models.The role of external field makes the evolution path of these models deviate from that of no external field.Turning off the harmonic potential well after the second Kapitza-Dirac pulse,the effect of external field causes the path of different models to move in space again and affects the density distribution of the measured time.When the external field is gravity field,the measurement precision increases with the increase of the number of modes after the harmonic oscillator potential well is closed,and the theoretical estimation can reach 10-9.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O562;O436

DOI:10.3788/jqo20182404.0201

收稿日期:2018-03-27

修改稿日期:2018-06-20

网络出版日期:--

作者单位    点击查看

何天琛:太原师范学院 物理系,山西 晋中 030619

联系人作者:何天琛(471925407@qq.com)

备注:何天琛(1985-),男,山西太原人,博士研究生,主要研究方向为冷原子干涉仪。

【1】Ferrari G,Poli N,Sorrentino F,et al.Long-Lived Bloch Oscillations with Bosonic Sr Atoms and Application to Gravity Measurement at the Micrometer Scale[J].Phys Rev Lett,2004,97(6):060402.DOI:https:∥doi.org/101103/PhysRevLett.97060402.

【2】Keith D W,Ekstrom C R,Turchette Q A,et al.An Interferometer for Atoms[J].Phys Rev Lett,1991,66(21):2693-2696.DOI:https:∥doi.org/101103/PhysRevLett.662693.

【3】Asenbaum P,Overstreet C,Kovachy T,et al.Phase Shift in an Atom Interferometer due to Spacetime Curvature across its Wave Function[J].Phys Rev Lett,2017,118:183602.DOI:https:∥doi.org/101103/PhysRevLett.118183602.

【4】Biedermann G W,McGuinness H J,Rakholia A V,et al.Atom Interferometry in a Warm Vapor[J].Phys Rev Lett,2017,118:163601.DOI:https:∥doi.org/101103/PhysRevLett.118163601.

【5】Abend S,Gebbe M,Gersemann M,et al.Atom-Chip Fountain Gravimeter[J].Phys Rev Lett,2016,117:203003.DOI:https:∥doi.org/101103/PhysRevLett.117203003.

【6】Trubko R,Greenberg J,Germaine M T S,et al.Atom Interferometer Gyroscope with Spin-Dependent Phase Shifts Induced by Light near a Tune-Out Wavelength[J].Phys Rev Lett,2015,114:140404.https:∥doi.org/101103/PhysRevLett.114140404.

【7】Cronin A D,Schmiedmayer J,Pritchard D E.Optics and Interferometry with Atoms and Molecules[J].Rev Mod Phys,2009,81:1051.DOI:https:∥doi.org/101103/RevModPhys.811051.

【8】Imanishi Y,Sato T,Higashi T,et al.A Network of Superconducting Gravimeters Detects Submicrogal Coseismic Gravity Changes[J].Science,2004,306:476.DOI:101126/science.1101875.

【9】Peters A,Chung K Y,Chu S.High-precision Gravity Measurements using Atom Interferometry[J].Metrologia,2001,38(1):25-61.DOI:https:∥doi.org/101088/0026-1394/38/1/4.

【10】Rasel E M,Oberthaler M K,Batelaan H,et al.Atom Wave Interferometry with Diffraction Gratings of Light[J].Phys Rev Lett,1995,75(14):2633-2637.DOI:https:∥doi.org/101103/.PhysRevLett.752633.

【11】Giltner D M,McGowan R W,Lee S A.Atom Interferometer Based on Bragg Scattering from Standing Light Waves[J].Phys Rev Lett,1995,75(14):2638.DOI:https:∥doi.org/101103/PhysRevLett.752638.

【12】McGuirk J M,Foster G T,Fixler J B,et al.Sensitive Absolute-gravity Gradiometry using Atom Interferometry[J].Phys Rev A,2002,65(3):033608.DOI:https:∥doi.org/101103/PhysRevA.65033608.

【13】Fixler J B,Foster G T,McGuirk J M,et al.Atom Interferometer Measurement of the Newtonian Constant of Gravity[J].Science,2007,315(5808):74-77.DOI:101126/science.1135459.

【14】He Tian-chen,Niu Peng-bin.Multimode Kapitza-Dirac Interferometer on Bose-Einstein Condensates with Atomic Interactions[J].Physics Letters A,2017,381:1087.DOI: https:∥doi.org/101016/j.physleta.201701049.

【15】周玉欣,李书峰,赵建刚,等.非谐势阱中玻色-爱因斯坦凝聚的数值计算[J].量子光学学报,2007,4:43-47.

【16】Wilson K E,Newman Z L,Lowney J D,et al.In Situ Imaging of Vortices in Bose-Einstein Condensates[J].Phys Rev A,2015,91:023621.DOI:https:∥doi.org/101103/PhysRevA.91023621.

【17】Keller C,Schmiedmayer J,Zeilinger A,et al.Adiabatic Following in Standing-wave Diffraction of Atoms[J].Applied Physics B,1999,69(4):303-309.DOI: https:∥doi.org/101007/s003400050810.

【18】Abramowitz M,Stegun I A.Handbook of Mathematical Functions with Formulas,Graphs and Mathematical Tables[M].New York:Dover Publications,1965.

【19】Holstein B R.Topics in Advanced Quantum Mechanics[M].New York:Perseus Books,1994.

【20】Sapiro R E,Zhang R,Raithel G.Atom Interferometry using Kapitza-Dirac Scattering in a Magnetic Trap[J].Phys Rev A,2009,79(4):043630.DOI:https:∥doi.org/101103/PhysRevA.79043630.

【21】Chwedenczuk J,Piazza F,Smerzi A.Multipath Interferometer with Ultracold Atoms Trapped in an Optical Lattice[J].Phys Rev A,2013,87:033607.DOI:https:∥doi.org/101103/PhysRevA.87033607.

【22】Barnett S M,Arnold S F,Arnold A S,et al.Coherence Length for a Trapped Bose Gas[J].Journal of Physics B,2000,33:4177.DOI:https:∥doi.org/101088/0953-4075/33/19/325.

引用该论文

HE Tian-chen. The Dynamics of the Multi-mode Atom Interferometer with Harmonic Potential well Closed After the First Period[J]. Acta Sinica Quantum Optica, 2018, 24(4): 391-397

何天琛. 多模式原子干涉仪在第一个周期之后关闭谐振子势阱的整体动力学研究[J]. 量子光学学报, 2018, 24(4): 391-397

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF