首页 > 论文 > 量子光学学报 > 24卷 > 4期(pp:409-419)

两模光机械系统中超冷原子的量子相变

Quantum Phase Transition of the Ultra-cold Atoms in a Two-mode Optomechanical Cavity

刘妮   王轩  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

Dicke模型(DM)用于描述单模玻色光场与多个全同二能级原子相互作用。本文利用自旋相干态变分法得到两模光机械系统中基态能量的精确解,并通过变分法求得相变点并画出基态相图,并在此基础上研究原子-场耦合强度等系统参数对基态稳定性的影响。通过稳定性讨论,我们发现:原子-光子耦合常数g和光子-声子耦合常量ζ都会对光机械系统的基态特性产生影响。当双模光腔变成单模光腔时,机械振子能诱导超辐射相的塌缩;而且当光子-声子耦合强度大时,超辐射相被完全压制,而直接出现两原子能级之间的转移;存在不稳定的非零光子态,类似于超辐射态。光机械腔中光子-声子耦合诱导的超辐射态的塌缩和复苏是不同于光腔内囚禁的BEC系统,即机械振子不存在时的情况,而双模光腔对量子相变点和相图预期也会有影响。可见,分析机械振子的对多稳性和相关的量子相变的影响是非常有意义的课题。

Abstract

Cavity quantum electrodynamics mainly studies the interaction between the atoms in the resonant cavity and the electromagnetic field which is restricted in a particular space. Quantum phase transition is a kind of phase transition which happens in the absolute zero. Quantum phase transition can be realized just by changing some order parameter in the absolute zero. The Dicke model (DM) describes the interaction of an ensemble of N identical two-level atoms with a single mode electromagnetic field. In this thesis,we can obtain the exact solution of the ground state energy by means of the spin-coherent-state variational method. After giving the phase transition point we plot the ground state’s phase diagram and study the influence of the system parameters (such as the atom-field coupling strength) on the stabilization of the ground state.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/jqo20182404.0401

基金项目:国家自然科学基金(11772177,61505100);山西省自然科学基金(201701D221001);山西省“1331工程”重点学科建设计划经费资助。

收稿日期:2018-05-08

修改稿日期:2018-06-15

网络出版日期:--

作者单位    点击查看

刘妮:山西大学 理论物理研究所,山西 太原 030006
王轩:山西大学 理论物理研究所,山西 太原 030006

联系人作者:刘妮(317446484@qq.com)

备注:刘妮(1984-),女, 山西长子人, 副教授,主要从事光与原子相互作用的研究。

【1】Baumann K,Guerlin C,Brennecke F,et al.Dicke Quantum Phase Transition with a Superfluid Gas in an Optical Cavity[J].Nature,2010,464:1301-1306.DOI:101038/nature09009.

【2】吉睿,刘妮,梁九卿.原子-原子相互作用影响下Dicke模型的量子相变[J].量子光学学报,2016,22:254-262.DOI:10. 3788/JQO 201622030010.

【3】Zhao X Q,Liu N,Bai X M,et al.Dicke Phase Transition and Collapse of Superradiant Phase in Optomechanical Cavity with Arbitrary Number of Atoms[J].Ann Phys,2017,378:448-458.DOI:101016/j.aop.201702006.

【4】Regal C A,Lehnert K W.From Cavity Electromechanics to Cavity Optomechanics[J].Conference Series,2011,264:012025.DOI:101088/1742-6596/264/1/012025.

【5】Grblacher S,Hammerer K,Vanner M R,et al.Observation of Strong Coupling Between a Micromechanical Resonator and an Optical Cavity Field[J].Nature,2009,460:7256.DOI:101038/nature08171.

【6】Liu Ni,Li Junqi,Liang J Q.Entanglement in a Tripartite Cavity-Optomechanical System[J].International Journal of Theoretical Physics,2013,52:706-715.DOI:101007/s10773-012-1379-0.

【7】刘妮,梁九卿.含时驱动的Dicke模型的混沌特性[J].物理学报[Acta Phys Sin], 2017, 66:110502.DOI:107498/aps. 66. 110502.

【8】Lian J L,Liu N,Liang J Q,et al.Ground-state Properties of a Bose-Einstein Condensate in an Optomechanical Cavity[J].Phys Rev A,2013,88:043820.DOI:101103/PhysRevA.88043820.

【9】Chen G,Zhang Y P,Xiao L T,et al.Strong Nonlinear Coupling Between an Ultracold Atomic Ensemble and a Nanomechanical Oscillator[J].Optics Express,2010,18:23016.DOI:2700270/QE 88 23016.

【10】Wang Z M,Lian J L,Liang J Q,et al.Collapse of the Superradiant Phase and Multiple Quantum Phase Transitions for Bose-Einstein Condensates in an Optomechanical Cavity[J].Physical A,2016,93(3):033630.DOI:101103/PhysRevA. 93033630.

【11】Zhao X Q,Liu N,Liang J Q.Collective Atomic-population-inversion and Stimulated Radiation for Two-component Bose-Einstein Condensate in an Optical Cavity[J].Optics Express,2017,25:008123.DOI:101364/QE.25008123.

【12】Fan J T,Yang Z W,Zhang Y W,et al.Hidden Continuous Symmetry and Nambu-Goldstone Mode in a Two-mode Dicke Model[J].Phys Rev A,2014,89:023812.DOI:101103/PhysRevA.89023812.

【13】Santos J P,Semio F L,Furuya K.Probing the Quantum Phase Transition in the Dicke Model Through Mechanical Vibrations[J].Phys Rev A,2010,82:063801.DOI:101103/PhysRevA.82063801.

引用该论文

LIU Ni,WANG Xuan. Quantum Phase Transition of the Ultra-cold Atoms in a Two-mode Optomechanical Cavity[J]. Acta Sinica Quantum Optica, 2018, 24(4): 409-419

刘妮,王轩. 两模光机械系统中超冷原子的量子相变[J]. 量子光学学报, 2018, 24(4): 409-419

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF