首页 > 论文 > 量子光学学报 > 24卷 > 4期(pp:420-429)

基于InP、InAs和InSb材料的超宽带红外线吸收器

Ultra-Broadband Infrared Absorber Based on InP,InAs and InSb Materials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文设计了一种由磷化铟(InP)、砷化铟(InAs)和锑化铟(InSb)三种半导体材料以及电介质材料堆叠而成的锥形光栅等离子体超宽带红外线吸收器,利用表面等离子体共振效应对入射电磁波实现吸收。我们采用频域有限差分法(FDFD)对此吸收器性能进行探究,在经过大量计算后得到了最优化结构参数,在入射角范围0~80°和入射波长为28~60 μm红外波长范围内实现了92%以上的高效吸收。此外,我们还研究了各结构参数对吸收效果的影响,结果表明:复合层数以及半导体材料的厚度对吸收率的影响相对较大,而复合层宽度、电介质材料厚度对吸收率的影响较小。本文所设计的吸收器有望在红外探测、光谱学等方面得到应用。

Abstract

A tapered grating-type plasmonic ultra-broadband infrared absorber,which is stacked by three kinds of semiconductors:indium phosphide(InP),indium arsenide(InAs),indium antimonide (InSb) and a dielectric material,is presented in this paper.The excellent absorptivity of the proposed absorber is achieved by the surface plasmon resonance effect.We use the frequency domain finite difference method (FDFD) to explore the property of the structure.And after a multiple experiments,the optimal structural parameters are obtained to achieve high efficiency absorption,more than 92%,in the range of 28~60 μm and 0~80°.In addition,the dependence of absorptivity on the structure parameters is also studied:the number of the composite layer and the thickness of the three semiconductor materials have a relatively great influence on the absorption properties,while the width of the composite layer and the thickness of the dielectric material have less influence on the absorption properties.The absorber designed in this paper is expected to be applied in infrared detection and spectroscopy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O539

DOI:10.3788/jqo20182404.0402

基金项目:国家自然科学基金(61378039;61575115);国家基础科学人才培养基金(J1103210)

收稿日期:2018-06-13

修改稿日期:2018-08-13

网络出版日期:--

作者单位    点击查看

赵晨:山西大学 物理电子工程学院,太原 030006
薛文瑞:山西大学 物理电子工程学院,太原 030006
陈曦:山西大学 物理电子工程学院,太原 030006
陈岳飞:山西大学 物理电子工程学院,太原 030006
李昌勇:量子光学与光量子器件国家重点实验室 山西大学激光光谱学研究所,太原 030006山西大学 极端光学协同创新中心,太原 030006

联系人作者:赵晨(274736709@qq.com)

备注:赵晨(1994-), 女, 硕士研究生, 山西长治人, 主要从事表面等离子学和电磁吸收器等方面的研究。

【1】Barnes W L,Dereux A,Ebbesen T W.Surface Plasmon Subwavelength Optics[J].Nature,2003,424(6950):824-830.DOI:101038/nature01937.

【2】Raether H.Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M].Springer Berlin Heidelberg,1988,111(1):1-133.

【3】Schurig D,Mock J J,Justice B J,et al.Metamaterial Electromagnetic Cloak at Microwave Frequencies[J].Science,2006,314(5801):977-980.DOI:101126/science.1133628.

【4】Pendry J B,Schurig D,Smith D R.Controlling Electromagnetic Fields[J].Science,2006,312(5781):1780-1782.DOI:101126/science.1125907.

【5】Meng F Y,Zhang K,Zhang F,et al.Reconfigurable Subwavelength Waveguide Based on Magnetic Metamaterial[J].Applied Physics A,2011,102(3):509-515.DOI:101007/s00339-010-6177-z.

【6】Dai D,Xu P,Chen P,et al.Low-loss Ultracompact Transverse-magnetic-pass Polarizer with a Silicon Subwavelength Grating Waveguide[J].Optics Letters,2014,39(15):4514-4517.DOI:101364/OL.39004514.

【7】Hao X,Liu X,Kuang C,et al.Far-field Super-resolution Imaging Using Near-field Illumination by Micro-fiber[J].Applied Physics Letters,2013,102(1):013104-013104-4.DOI:101063/14773572.

【8】Kim K,Yajima J,Oh Y,et al.Imaging:Nanoscale Localization Sampling Based on Nanoantenna Arrays for Super-resolution Imaging of Fluorescent Monomers on Sliding Microtubules (Small 6/2012)[J].Small,2012,8(6):786-786.DOI:101002/smll.201101840.

【9】Palakal M,Mukhopadhyay S,Mostafa J,et al.An Intelligent Biological Information Management System[C].Bioinformatics,2002:159-163.DOI:101145/508791508824.

【10】Tang X,Feng Q,Wang J,et al.Clustering Based on Multiple Biological Information:Approach for Predictingprotein Complexes[J].Iet Systems Biology,2013,7(5):223-230.DOI:101049/iet-syb.20120052.

【11】Zhang Xu,Wu Yu,Tong Xuan,et al.Study of Surface Plasmon Polariton Waveguide of Silver Nanowire[J].Acta Optica Sinica,2016,36(1):0124001.DOI:101016/j.bios.201802006.

【12】Wu C,Iii B N,John J,et al.Large-area,Wide-angle,Spectrally Selective Plasmonic Absorber[J].Physical Review B Condensed Matter,2011,84(7):173-177.DOI:101016/j.talanta.201802044.

【13】Zhong M,Liu S J,Xu B L,et al.Single-band High Absorption and Coupling Between Localized Surface Plasmons Modes in a Metamaterials Absorber[J].Optical Materials,2017,72:283-288.DOI:101016/j.optmat.201706019.

【14】Chern R L,Hong W T.Nearly Perfect Absorption in Intrinsically Low-loss Grating Structures[J].Optics Express,2011,19(9):8962-8972.DOI:101364/OE.19008962.

【15】Liao Y L,Zhao Y.A Multiband Absorber Based on Multipolar Plasmon Excitation[J].Optik-International Journal for Light and Electron Optics,2014,125(13):3037-3039.DOI:101016/j.ijleo.201312017.

【16】Zhai Y,Chen G,Xu J,et al.Multiple-band Perfect Absorbers Based on the Combination of Fabry-Perot Resonance and the Gap Plasmon Resonance[J].Optics Communications,2017,399:28-33.DOI:101016/j.optcom.201704041.

【17】Aydin K,Ferry V E,Briggs R M,et al.Broadband Polarization-independent Resonant Light Absorption Using Ultrathin Plasmonic Super Absorbers[J].Nature Communications,2011,2(1):517.DOI:101038/ncomms1528.

【18】Zhong M.Localized Surface Plasmon Resonnance Induced Terahertz Broad Absorption Band[J].Optics Communications,2015,356:607-611.DOI:101016/j.optcom.201508059.

【19】Bonod N,Tayeb G,Maystre D,et al.Total Absorption of Light by Lamellar Metallic Gratings[J].Optics Express,2008,16(20):15431-15438.DOI:101364/OE.16015431.

【20】Song J,Lu L,Cheng Q,et al.Surface Plasmon-Enhanced Optical Absorption in Monolayer MoS 2,with One-Dimensional Au Grating[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2018,211:138-143.DOI:101016/j.jqsrt.201802036.

【21】Kats M A,Blanchard R,Genevet P,et al.Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media[J].Nature Materials,2013,12(1):20-24.DOI:101038/NMAT3443.

【22】Hedayati M K,Javaherirahim M,Mozooni B,et al.Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials[J].Advanced Materials,2011,23(45):5409-5409.DOI:101002/adma.201102646.

【23】Chen C,Sheng Y,Wang J.Computed a Multiple Band Metamaterial Absorber and Its Application Based on the Figure of Merit Value[J].Optics Communications,2017,406:145-150.DOI:101016/j.optcom.201706009.

【24】Qian Z,Yang D,Wang W.Terahertz Modulation Based on Surface Plasmon Resonance by Self-gated Graphene[J].Optics Communications,2018,414:52-58.DOI:101016/j.optcom.201712039.

【25】Dasri T,Chingsungnoen A.Surface Plasmon Resonance Enhanced Light Absorption and Wavelength Tuneable in Gold-coated Iron Oxide Spherical Nanoparticle[J].Journal of Magnetism & Magnetic Materials,2018,456:368-371.DOI:101016/j.jmmm.201802066.

【26】Liu L,He Z,Zhao Y,et al.Modulation of the Composition and Surface Morphology of Expanded Graphite/Fe/Fe3O4 Composites for Plasmon Resonance-enhanced Microwave Absorption[J].Journal of Alloys and Compounds,2018,4.DOI:101016/j.jallcom.201804212.

【27】Wu D,Liu Y,Yu Z,et al.Wide-angle,Polarization-insensitive and Broadband Absorber Based on Eight-fold Symmetric SRRs Metamaterial[J].Optics Communications,2016,380:221-226.DOI:101016/j.optcom.201606023.

【28】Xing R,Jian S.A Dual-band THz Absorber Based on Graphene Sheet and Ribbons[J].Optics & Laser Technology,2018,100:129-132.DOI:101016/j.optlastec.201710003.

【29】Aslan E,Kaya S,Aslan E,et al.Polarization Insensitive Plasmonic Perfect Absorber with Coupled Antisymmetric Nanorod Array[J].Sensors & Actuators B Chemical,2017,243:617-625.DOI:101016/j.snb.201612030.

【30】Hao J,Wang J,Liu X,et al.High Performance Optical Absorber Based on a Plasmonic Metamaterial[J].Applied Physics Letters,2010,96(25):251104-251104-3.DOI:101063/13442904.

【31】Zhao D,Qiu M,Li Q,et al.Double-sided Polarization-independent Plasmonic Absorber at Near-infrared Region[J].Optics Express,2013,21(11):13125-13133.DOI:101364/OE.21013125.

【32】Zare M S,Nozhat N,Rashiditabar R.Tunable Graphene Based Plasmonic Absorber with Grooved Metal Film in Near Infrared Region[J].Optics Communications,2017,398:56-61.DOI:101016/j.optcom.201704025.

【33】Aslan E,Aslan E,Turkmen M,et al.Experimental and Numerical Characterization of a Mid-infrared Plasmonic Perfect Absorber for Dual-band Enhanced Vibrational Spectroscopy[J].Optical Materials,2017,73:213-222.DOI:101016/j.optmat.201708023.

【34】Yuan Wan,Yashuai An,Zhi Tao,et al.Manipulation of Surface Plasmon Resonance of a Graphene-based Au Aperture Antenna in Visible and Near-infrared Regions[J].Optics Communications,2018,410:733-739.DOI:101016/j.optcom.201711042.

【35】Vliet T V D,Vece M D.Shifting the Aluminum Nanoparticle Plasmon Resonance to the Visible with SiN and a-Si Thin Films[J].Thin Solid Films,2016,603:404-407.DOI:101016/j.tsf.201602061.

【36】Monnier G F.A Review of Infrared Spectroscopy in Microarchaeology:Methods,Applications,and Recent Trends[J].Journal of Archaeological Science Reports,2018(18):806-823.DOI:101016/j.jasrep.201712029.

【37】Marcelli A,Cricenti A,Kwiatek W M,et al.Biological Applications of Synchrotron Radiation Infrared Spectromicroscopy[J].Biotechnology Advances,2012,30(6):1390-1404.DOI:101016/j.biotechadv.201202012.

【38】Sousa E,Vardasca R,Teixeira S,et al.A Review on the Application of Medical Infrared Thermal Imaging in Hands[J].Infrared Physics & Technology,2017,86:315-323.DOI:101016/j.infrared.201707020.

【39】Xue Wenrui,Chen Xi,Peng Yanling,et al.Grating-type Mid-infrared Light Absorber Based on Silicon Carbide Material[J].Optics Express,2016,24(20):22596-22605.DOI:101364/OE.24022596.

【40】Toprak A,Ghobadi A,Butun B,et al.Visible Light Nearly Perfect Absorber:an Optimum Unit Cell Arrangement for Near Absolute Polarization Insensitivity[J].Opt Express,2017,25(22):27624-27634.DOI:101364/OE.25027624.

【41】Wu D,Liu C,Liu Y,et al.Numerical Study of an Ultra-broadband Near-perfect Solar Absorber in the Visible and Near-infrared Region[J].Opt Lett,2017,42(3):450-453.DOI:101364/OL.42000450.

【42】Ji D,Song H,Zeng X,et al.Broadband Absorption Engineering of Hyperbolic Metafilm Patterns[C].Lasers and Electro-Optics.IEEE,2014,4(3):1-2.DOI:101038/srep04498.

【43】Ding F,Jin Y,Li B,et al.Ultrabroadband Strong Light Absorption Based on Thin Multilayered Metamaterials[J].Laser & Photonics Reviews,2015,8(6):946-953.DOI:101002/lpor.201400157.

【44】Lin Y,Cui Y,Ding F,et al.Tungsten Based Anisotropic Metamaterial as an Ultra-broadband Absorber[J].Optical Materials Express,2016,7(2):606-617.DOI:101364/OME.7000606.

【45】Wu S D,Guo L W,Li Z H,et al.Effect of the Low-temperature Buffer Thickness on Quality of InSb Grown on GaAs Substrate by Molecular Beam Epitaxy[J].Journal of Crystal Growth,2005,277(1):21-25.DOI:101016/j.jcrysgro.200412141.

【46】Khan M Z M,Ng T K,Ooi B S.Self-assembled InAs/InP Quantum Dots and Quantum Dashes:Material Structures and Devices[J].Progress in Quantum Electronics,2014,38(6):237-313.DOI:101016/j.pquantelec.201411001.

【47】Korobkin D,Urzhumov Y,Shvets G.Enhanced Near-field Resolution in Midinfrared using Metamaterials[J].Journal of the Optical Society of America B,2006,23(3):468-478.DOI:101364/JOSAB.23000468.

【48】Hass M,Henvis B W.Infrared Lattice Reflection Spectra of Ⅲ-Ⅴ Compound Semiconductors[J].Journal of Physics & Chemistry of Solids,1962,23(8):1099-1104.DOI:101016/0022-3697(62)90127-0.

【49】Sanderson R B.Far Infrared Optical Properties of Indium Antimonide[J].Journal of Physics & Chemistry of Solids,1965,26(5):803-810.DOI:101016/0022-3697(65)90255-6.

引用该论文

ZHAO Chen,XUE Wen-rui,CHEN Xi,CHEN Yue-fei,LI Chang-yong. Ultra-Broadband Infrared Absorber Based on InP,InAs and InSb Materials[J]. Acta Sinica Quantum Optica, 2018, 24(4): 420-429

赵晨,薛文瑞,陈曦,陈岳飞,李昌勇. 基于InP、InAs和InSb材料的超宽带红外线吸收器[J]. 量子光学学报, 2018, 24(4): 420-429

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF