发光学报, 2019, 40 (2): 224, 网络出版: 2019-03-11  

窄带有机光电探测器的优化设计

Optimum Design of Narrowband Organic Photodetectors
作者单位
广东石油化工学院 理学院, 广东 茂名 525000
摘要
针对基于无机材料的光电探测器需要借助滤光器或棱镜耦合实现窄带响应, 提出了一种通过有机材料制备窄带光电探测器并提高吸收峰值和降低半高全宽的方法和结构。该器件由分布布拉格反射器和有机光电二极管构成。有机光电二极管的顶电极和底电极之间构成光学微腔。采用传输矩阵法, 详细分析了分布布拉格反射器的中心波长、有机光电二极管透明顶电极和光敏感层的厚度对有机光电探测器吸收性能的影响。研究结果表明, Tamm等离激元共振波长接近光敏感层的光学带隙时, 可获得半高全宽小于20 nm的窄带响应, 并且吸收峰值在70%以上。基于PTB7∶PC71BM和PTB7-Th∶IEICO-4F的有机光电探测器分别可用于探测红光和近红外光。该研究从基本物理机制出发, 结合材料和器件结构可将有机光电探测器的响应窗口从可见光拓展至近红外光。
Abstract
Unlike conventional inorganic photodetectors in conjunction with optical filters or prisms to obtain wavelength selective response, photodetectors rely on organic semiconductors enable to facilitate wavelength selective absorption. In this article, a novel method and relative architecture are proposed to effectively enhance the peak absorption and decrease the full width at half maximum (FWHM) of the narrowband organic photodetectors. The architecture is combined with distributed Bragg reflector (DBR) and organic photodiode (OPD). An optical resonant is formed between the top contact and bottom contact of the OPD. The effects of the center wavelength of the DBR, the thickness of transparent top contact and the thickness of photoactive layer on the absorption performance of the organic photodetector were analyzed in detail by using the transfer matrix method. The simulation results indicate that FWHM less than 20 nm and absorption peak above 70% can be obtained with the Tamm plasmon polaritons resonant wavelength arisen nearby the optical bandgap of the photoactive layer. Red and NIR organic photodetectors can be obtained with photoactive layers of PTB7∶PC71BM and PTB7-Th∶IEICO-4F, respectively. The design concept combining materials and device structure allows for tuning response region from visible to NIR.

罗国平. 窄带有机光电探测器的优化设计[J]. 发光学报, 2019, 40(2): 224. LUO Guo-ping. Optimum Design of Narrowband Organic Photodetectors[J]. Chinese Journal of Luminescence, 2019, 40(2): 224.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!