首页 > 论文 > 光学学报 > 39卷 > 4期(pp:428001--1)

基于Vernier效应的法布里-珀罗传感器增敏方法

Sensitivity Improvement of Fabry-Perot Sensor Based on Vernier Effect

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种分离型光纤传感增敏结构, 并联连接两个腔长相近的法布里-珀罗(F-P)腔。理论分析了此结构的增敏原理并制备了两组增敏结构。实验结果表明, 增敏结构的压强灵敏度值由单F-P结构的4.85 nm/MPa提高到43.95 nm/MPa, 温度灵敏度由单F-P腔的0.0675 nm/℃提高至0.40364 nm/℃, 在相同温度下采用双腔结构可消除温度交叉敏感对测量结果的影响。此结构克服了集成式增敏结构的缺陷, 在不影响原传感器结构的情况下提高了灵敏度, 且可通过更换辅助腔来调节灵敏度, 具有移植性好和交叉敏感小等优势。

Abstract

A separation type fiber sensor structure is designed to improve sensitivity, in which double Fabry-Perot (F-P) cavities with similar cavity lengths are connected in parallel. The sensitization principle of this structure is theoretically analyzed and two groups of sensitizing structures are prepared. The experimental results show that the pressure sensitivity of the sensitizing structure is increased to 43.95 nm/MPa from 4.85 nm/MPa of the single F-P structure. The temperature sensitivity is increased to 0.40364 nm/℃ from 0.0675 nm/℃ of the single F-P cavity. At the same temperature, the use of double cavity structure can eliminate the effect of temperature cross-sensitivity on measurement results. The structure overcomes the defects of integrated sensitization structure, and increases the sensitivity without affecting the original sensor structure. The sensitivity can be adjusted by replacing the auxiliary cavity. This structure has the advantages of good portability and small cross-sensitivity, etc.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/aos201939.0428001

所属栏目:遥感与传感器

基金项目:国家自然科学基金重点项目(61205084, 61735011)、河北省自然科学基金 (F2016203389, C2015003053)、新疆维吾尔自治区自然科学基金(2018D01A25)、河北省教育厅高等学校科技计划青年基金(自然类)(QN201741)、校级项目燕山大学基础研究专项课题青年课题(理工A类)(15LGA008)

收稿日期:2018-10-14

修改稿日期:2018-11-14

网络出版日期:--

作者单位    点击查看

刘燕燕:燕山大学信息科学与工程学院, 河北 秦皇岛 066004河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004巴音郭楞职业技术学院电子信息工程学院, 新疆 库尔勒 841000
刘磊:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
刘雪强:燕山大学信息科学与工程学院, 河北 秦皇岛 066004河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
王燕涛:燕山大学里仁学院, 河北 秦皇岛 066004
张鑫:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
王明君:燕山大学信息科学与工程学院, 河北 秦皇岛 066004
齐跃峰:燕山大学信息科学与工程学院, 河北 秦皇岛 066004河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004

联系人作者:刘磊(liuleiyanshan@163.com)

【1】Zhang K Y, Zhao H, Yang Y Q, et al. High voltage electrostatic sensor based on Fabry-Perot interferometer[J]. Acta Optica Sinica, 2014, 34(11): 1106002.
张开玉, 赵洪, 杨玉强, 等. 基于光纤法布里-珀罗干涉仪的高压静电传感器[J]. 光学学报, 2014, 34(11): 1106002.

【2】Zhang W H, Jiang J F, Wang S, et al. Fiber-optic Fabry-Perot high-pressure sensor for marine applications[J]. Acta Optica Sinica, 2017, 37(2): 0206001.
张伟航, 江俊峰, 王双, 等. 面向海洋应用的光纤法布里-珀罗高压传感器[J]. 光学学报, 2017, 37(2): 0206001.

【3】Qi Y F, Jia C, Liu L, et al. Biosensing properties of nanofilm-modified long-period fiber gratings[J]. Acta Optica Sinica, 2018, 38(10): 1006005.
齐跃峰, 贾翠, 刘磊, 等. 纳米膜修饰长周期光纤光栅生物传感特性研究[J]. 光学学报, 2018, 38(10): 1006005.

【4】Wang W Y, Wen J X, Pang F F . All single-mode fiber Fabry-Pérot interferometric high temperature sensor fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 2012, 39(10): 1005001.
王文辕, 文建湘, 庞拂飞, 等. 飞秒激光制备的全单模光纤法布里-珀罗干涉高温传感器[J].中国激光, 2012, 39(10): 1005001.

【5】Fusiek G, Niewczas P, Burt G M. Preliminary evaluation of a high-pressure, high-temperature downhole optical sensor[C]. Sensors, 2011: 409-412.

【6】Liao C R, Liu S, Xu L, et al. Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement[J]. Optics Letters, 2014, 39(10): 2827-2830.

【7】Shangguan C M, He W, Zhang W, et al. Temperature and strain simultaneous measuring optical fiber sensor based on F-P cascade MZ[J]. Optical Communication Technology, 2018, 42(1): 16-19.
上官春梅, 何巍, 张雯, 等. F-P级联MZ温度、应变同时测量的光纤传感器[J]. 光通信技术, 2018, 42(1): 16-19.

【8】Wang X H, Zhang W C, Zhao H, et al. Impact of liquid insulation on characteristic parameters of fiber Fabry-Perot partial discharge induced ultrasound sensor[J]. Acta Optica Sinica, 2018, 38(4): 0406005.
王学会, 张伟超, 赵洪, 等. 液体绝缘对光纤法布里-珀罗局放超声传感器特性参数影响[J]. 光学学报, 2018, 38(4): 0406005.

【9】Dai D X. Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators[J]. Optics Express, 2009, 17(26): 23817-23822.

【10】Jin L, Li M, He J J. Highly-sensitive optical sensor using two cascaded-microring resonators with vernier effect[C]//IEEE Communications and Photonics Conference and Exhibition, 2009 Asia Communications and Photonics conference and Exhibition (ACP), November 2-6, 2009, Shanghai, China. New York: IEEE, 2009: TuM4.

【11】Shao L Y, Luo Y, Zhang Z Y, et al. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on vernier-effect[J]. Optics Communications, 2015, 336: 73-76.

【12】Hu L. Study on Fabry-Perot fiber-optic sensor and mechanism of improving its sensitivity[D]Harbin: Harbin Institute of Technology,2016: 36-44.
胡玲. 光纤F-P传感器及其灵敏度提高机理的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 36-44.

【13】Bi W H. Mathematical model for fiber-optical non-symmetrical Fabry-Perot interferometric cavity[J]. Acta Optica Sinica, 2000, 20(7): 873-878.
毕卫红. 本征不对称光纤法布里-珀罗干涉仪的理论模型[J]. 光学学报, 2000, 20(7): 873-878.

【14】Yang Y, Xu B, Liu Y M, et al. Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect[J]. Acta Physica Sinica, 2017, 66(9): 094205.
杨易, 徐贲, 刘亚铭, 等. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器[J]. 物理学报, 2017, 66(9): 094205.

【15】Zhang P, Tang M, Gao F, et al. Cascaded fiber-optic Fabry-Perot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field[J]. Optics Express, 2014, 22(16): 19581-19588.

引用该论文

Liu Yanyan,Liu Lei,Liu Xueqiang,Wang Yantao,Zhang Xin,Wang Mingjun,Qi Yuefeng. Sensitivity Improvement of Fabry-Perot Sensor Based on Vernier Effect[J]. Acta Optica Sinica, 2019, 39(4): 0428001

刘燕燕,刘磊,刘雪强,王燕涛,张鑫,王明君,齐跃峰. 基于Vernier效应的法布里-珀罗传感器增敏方法[J]. 光学学报, 2019, 39(4): 0428001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF