首页 > 论文 > 光学学报 > 39卷 > 4期(pp:406002--1)

基于傅里叶变换的光纤陀螺测试环境自评估技术

Self-Assessment Technique for Fiber Optic Gyroscope Test Environment Based on Fourier Transform

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于傅里叶变换的光纤陀螺(FOG)测试环境自评估技术。测试结果表明, FOG零偏稳定性由环境3中的0.0015 (°)/h(100 s, 1σ)(数据100 s平滑后的标准差)降低到环境4中的0.0019 (°)/h (100 s, 1σ); 随机游走系数由环境3中的2.1565×10-4 (°)/h1/2降低到环境4中的2.8876×10-4 (°)/h1/2。对另一只脉冲输出的陀螺进行了不同环境下的测试, 零偏稳定性由环境3中的0.0013 (°)/h (100 s, 1σ)降低到环境4中的0.0021 (°)/h (100 s, 1σ)。通过两只陀螺的实验, 验证了所提自评估技术的有效性, 为高精度FOG的精度测试提供了指导。

Abstract

A self-assessment technique based on Fourier transform is presented to evaluate test environment of fiber optic gyroscope (FOG). Test results show that the zero bias stability of FOG is decreased to 0.0019 (°)/h (100 s, 1σ, that means the standard deviation after 100 s smoothing) in environment 4 from 0.0015 (°)/h (100 s, 1σ) in environment 3, and random walk coefficient is decreased to 2.8876×10-4 (°)/h1/2 in environment 4 from 2.1565×10-4 (°)/h1/2 in environment 3. Another FOG with pulse output is tested under different environments, whose zero bias stability is decreased to 0.0021 (°)/h (100 s, 1σ) in environment 4 from 0.0013 (°)/h (100 s, 1σ) in environment 3. The experiments of two FOGs demonstrate that the proposed self-assessment technique is effective, which provides guidance for the precision test of high precision FOG.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:V241.5;O174.22

DOI:10.3788/aos201939.0406002

所属栏目:光纤光学与光通信

基金项目:预研项目(30508040203)

收稿日期:2018-10-14

修改稿日期:2018-11-07

网络出版日期:--

作者单位    点击查看

刘元元:北京航天时代光电科技有限公司, 北京 100854
杨永斌:北京航天时代光电科技有限公司, 北京 100854
冯文帅:北京航天时代光电科技有限公司, 北京 100854
于海成:北京航天时代光电科技有限公司, 北京 100854

联系人作者:刘元元(liuyuanyuan1773@163.com)

【1】Wu Y J. The current situation and countermeasures of high precision fiber optic gyro[J]. Navigation Positioning and Timing, 2015, 2(4): 53-57.
吴衍记. 高精度光纤陀螺发展现状及对策[J]. 导航定位与授时, 2015, 2(4): 53-57.

【2】Xue L L, Chen S C, Chen X Z. Development and review of foreign inertial technology in 2017[J]. Navigation and Control, 2018, 17(2): 1-10.
薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制, 2018, 17(2): 1-10.

【3】Xue L L, Chen S C, Chen X Z. Development and review of foreign inertial technology in 2016[J]. Navigation and Control, 2017, 16(3): 105-112, 84.
薛连莉, 陈少春, 陈效真. 2016年国外惯性技术发展与回顾[J]. 导航与控制, 2017, 16(3): 105-112, 84.

【4】Xu H G, Pei Y F, Liu C, et al. The development and application of fibre optic gyroscope INS in navigation domain[J]. Navigation Positioning and Timing, 2018, 5(2): 7-11.
徐海刚, 裴玉锋, 刘冲, 等. 光纤陀螺惯导在航海领域的发展与应用[J]. 导航定位与授时, 2018, 5(2): 7-11.

【5】Wang X K, Gao Y P, Wang P L, et al. Measurement and assessment of working environment for fiber optic gyroscope[J]. Journal of Time and Frequency, 2016, 39(1): 54-60.
王惜康, 高玉平, 王平利, 等. 光纤陀螺仪工作环境的测量与评估[J]. 时间频率学报, 2016, 39(1): 54-60.

【6】Narasimhappa M, Sabat S L, Nayak J. Fiber-optic gyroscope signal denoising using an adaptive robust kalman filter[J]. IEEE Sensors Journal, 2016, 16(10): 3711-3718.

【7】Yang G L, Liu Y Y, Li M, et al. AMA- and RWE- based adaptive Kalman filter for denoising fiber optic gyroscope drift signal[J]. Sensors, 2015, 15(10): 26940-26960.

【8】Li Y H, Yang G L, Liu Y Y. Application of EMD filtering based on l2-norm in denoising FOG signal[J]. Journal of Chinese Inertial Technology, 2017, 25(2): 244-248.

【9】Tao Y, Li H J, Xu H G. Research on precision of high accuracy FOG-SINS under steady conditions[J]. Navigation Positioning and Timing, 2018, 5(3): 30-34.
陶冶, 李海军, 徐海刚. 稳定环境下的高精度光纤捷联惯导精度探索研究[J]. 导航定位与授时, 2018, 5(3): 30-34.

【10】Sanders G A, Sanders S J, Strandjord L K, et al. Fiber optic gyro development at Honeywell[J]. Proceedings of SPIE, 2016, 9852: 985207.

【11】Shupe D M. Thermally induced nonreciprocity in the fiber-optic interferometer[J]. Applied Optics, 1980, 19(5): 654-655.

【12】Liu Y Y, Yang G L, Yin H L. Temperature drift modeling and compensation of FOG combined extended forgetting factor recursive least square (EFRLS)[C]. Chinese Control Conference, 2015: 5035-5040.

【13】Gao Z X. Research on environmental error of fiber-optic gyroscope and suppressing method[D]. Harbin: Harbin Engineering University, 2017: 3-16.
郜中星. 光纤陀螺环境误差机理与抑制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 3-16.

【14】Yu L Y, Wang Z O. Modeling and analysis of micro vibration signal detection of fiber optic gyroscope[J]. Laser Journal, 2016, 37(10): 57-61.
俞梁英, 王子欧. 光纤陀螺微振动信号检测的建模与分析[J]. 激光杂志, 2016, 37(10): 57-61.

【15】Shu J T, Li X Y, Wu L, et al. Vibration error restrain technology for high-precision fiber optic gyroscope[J]. Infrared and Laser Engineering, 2011, 40(11): 2201-2206.
舒建涛, 李绪友, 吴磊, 等. 高精度光纤陀螺振动误差抑制技术[J]. 红外与激光工程, 2011, 40(11): 2201-2206.

【16】Chen Y Z, Wang X X, Gao Y Y, et al. Research on the influence mechanism of earth′s magnetic field on zero bias of high precision FOG[J]. Electronic Measurement Technology, 2016, 39(1): 147-150.
谌尧周, 王夏霄, 高洋洋, 等. 地磁场对高精度光纤陀螺仪零偏的影响机理研究[J]. 电子测量技术, 2016, 39(1): 147-150.

【17】Zeng H D, Han F, Liu Y L. Development and current situation of Fourier analysis[J]. Modern Electronics Technique, 2014, 37(3): 144-147.
曾海东, 韩峰, 刘瑶琳. 傅里叶分析的发展与现状[J]. 现代电子技术, 2014, 37(3): 144-147.

引用该论文

Liu Yuanyuan,Yang Yongbin,Feng Wenshuai,Yu Haicheng. Self-Assessment Technique for Fiber Optic Gyroscope Test Environment Based on Fourier Transform[J]. Acta Optica Sinica, 2019, 39(4): 0406002

刘元元,杨永斌,冯文帅,于海成. 基于傅里叶变换的光纤陀螺测试环境自评估技术[J]. 光学学报, 2019, 39(4): 0406002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF