光学学报, 2019, 39 (4): 0416002, 网络出版: 2019-05-10   

太赫兹波段双频带手征性超表面的设计 下载: 1175次

Design of Dual-Band Terahertz Chiral Metasurface
作者单位
1 武汉科技大学信息科学与工程学院, 湖北 武汉 430081
2 华中科技大学光学与电子信息学院, 湖北 武汉 430074
摘要
提出一种具有巨旋光性和负折射特性的双频带手征性超表面结构,该手征性超表面由中间介质层和双层共轭卍字形周期排列而成;通过研究面电流密度分布,解释了巨旋光性和负折射率产生的原因;研究了手征性超表面单元结构的连续圆金属贴片半径和介质层厚度对该结构旋光性和负折射特性的影响。数值模拟结果表明:该结构在0.1~2 THz频率范围内有4个谐振频点,在谐振频点附近,平均折射率均为负值,实部幅值最大为-3.7;该结构在谐振频点附近显示了巨旋光性以及双频带的左旋圆偏振波和右旋圆偏振波负折射特性,最大偏振旋转角达到了122°,右旋圆偏振波折射率实部幅值可达-12.74。
Abstract
A dual-band chiral metasurface structure with giant optical activity and negative refractivity is proposed, which is composed of a periodic array of a middle dielectric layer and two conjugated gammadion layers. The reasons for the occurrences of giant optical activity and negative refractive indexes are clarified by analyzing the surface current density distributions. The effects of the radius of the connected circular metallic patch in the unit structure of the chiral metasurface and the thickness of the dielectric layer on optical activity and negative refractivity are studied. The numerical simulation results show that there are four resonance frequencies within the frequency range from 0.1 THz to 2 THz, and near these resonance frequencies, the average refractive index is negative and the maximal magnitude of the real part is -3.7. The proposed structure indicates its exceptional giant optical activity as well as its dual-band negative refractivity for a left circularly polarized wave and a right circularly polarized wave near these resonance frequencies. The maximum polarization rotation angle reaches 122° and the magnitude of the real part of the refractive index of a right circularly polarized wave reaches -12.74.

赵铭茜, 程用志, 陈浩然, 龚荣洲. 太赫兹波段双频带手征性超表面的设计[J]. 光学学报, 2019, 39(4): 0416002. Mingxi Zhao, Yongzhi Cheng, Haoran Chen, Rongzhou Gong. Design of Dual-Band Terahertz Chiral Metasurface[J]. Acta Optica Sinica, 2019, 39(4): 0416002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!