首页 > 论文 > 光学学报 > 39卷 > 4期(pp:412012--1)

基于满周期等相移算法的改进双频在线相位测量轮廓术

Improved Dual-Frequency On-Line Phase Measuring Profilometry Based on Full-Cycle Equal Phase-Shift Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于在线三维(3D)测量中被测物体与高频条纹的相对位置关系, 提出了一种改进的双频在线3D测量方法, 通过控制被测物体运动时的采集点, 使各帧像素匹配后变形条纹图中的高频条纹光强分布完全一致。直接利用满周期等相移算法进行相位计算, 从而避开滤波过程, 提升3D重构精度。高频条纹光强分量被设计为远小于低频条纹光强分量, 可将其看成是微弱的背景光, 进一步减小高频条纹对相位计算的干扰。仿真与实验结果表明:相比其他方法, 所提方法可有效提升重构精度。

Abstract

Based on the relative position relationship between the measured object and the high-frequency fringe in the on-line three-dimensional (3D) measurement, an improved dual-frequency on-line 3D measurement method is proposed. By controlling the acquisition points when the measured object moves, the light intensity distribution of the high-frequency fringe in each deformed pattern after pixel matching can be exactly consistent. The full-cycle equal phase-shift algorithm is directly applied for phase calculation so that the filtering process is avoided and the 3D reconstruction accuracy is improved. The light intensity component of the high-frequency fringe is designed to be much smaller than that of the low-frequency fringe, and it can be considered as faint background light and the interference of high-frequency fringe on phase calculation is further reduced. The simulated and experimental results show that compared with other methods, the proposed method can improve the reconstruction accuracy effectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN247

DOI:10.3788/aos201939.0412012

所属栏目:仪器,测量与计量

基金项目:国家863计划(2007AA01Z333)、国家重大专项(2009ZX02204-008)、国家自然科学基金青年基金(61601318)、山西省应用基础研究项目青年科技研究基金(201601D021078)

收稿日期:2018-10-22

修改稿日期:2018-12-02

网络出版日期:--

作者单位    点击查看

彭旷:湖北大学物理与电子科学学院铁电压电材料与器件湖北省重点实验室, 湖北 武汉 430062
曹益平:四川大学光电科学技术系, 四川 成都 610064
武迎春:太原科技大学电子信息工程学院, 山西 太原 030024

联系人作者:曹益平(ypcao@scu.edu.cn)

【1】Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics, 1984, 23(18): 3105-3108.

【2】Brown G M. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering, 2000, 39(1): 10-22.

【3】Zheng D L, Da F P, Qian K M, et al. Phase-shifting profilometry combined with gray-code patterns projection: unwrapping error removal by an adaptive median filter[J]. Optics Express, 2017, 25(5): 4700-4713.

【4】Xu X F, Cao Y P. An improved Stoilov algorithm based on statistical approach[J]. Acta Optica Sinica, 2009, 29(3): 733-737.
许幸芬, 曹益平. 基于统计逼近的Stoilov改进算法[J]. 光学学报, 2009, 29(3): 733-737.

【5】Chen H L, Yin Y K, Cai Z W, et al. Suppression of the nonlinear phase error in phase shifting profilometry: considering non-smooth reflectivity and fractional period[J]. Optics Express, 2018, 26(10): 13489-13505.

【6】Ekstrand L, Zhang S. Three-dimensional profilometry with nearly focused binary phase-shifting algorithms[J]. Optics Letters, 2011, 36(23): 4518.

【7】Chen C, Wan Y Y, Cao Y P. Instability of projection light source and real-time phase error correction method for phase-shifting profilometry[J]. Optics Express, 2018, 26(4): 4258.

【8】Ri S E, Fujigaki M, Morimoto Y. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera[J]. Applied Optics, 2008, 47(29): 5400-5407.

【9】Rusinkiewicz S, Hall-Holt O, Levoy M. Real-time 3D model acquisition[J]. ACM Transactions on Graphics, 2002, 21(3): 438-446.

【10】Hyun J S, Chiu G T C, Zhang S. High-speed and high-accuracy 3D surface measurement using a mechanical projector[J]. Optics Express, 2018, 26(2): 1474.

【11】Chen C, Cao Y P, Zhong L J, et al. An on-line phase measuring profilometry for objects moving with straight-line motion[J]. Optics Communications, 2015, 336: 301-305.

【12】Zhong L J, Cao Y P. An on-line phase measuring profilometry with phase-shifting perpendicular to moving direction of measured object[J]. Acta Optica Sinica, 2009, 29(2): 417-420.
钟立俊, 曹益平. 相移正交物体运动方向的在线相位测量轮廓术[J]. 光学学报, 2009, 29(2): 417-420.

【13】He Y H, Cao Y P, Zhai A P. A 3-D measurement method with orthogonal composite light based on fringe contrast and background calibration[J]. Acta Optica Sinica, 2010, 30(11): 3191-3196.
何宇航, 曹益平, 翟爱平. 基于条纹对比度和背景光校准的正交复合光三维测量方法[J]. 光学学报, 2010, 30(11): 3191-3196.

【14】WuY C, Cao Y P, Shi S P, et al. On-line three-dimensional inspection based on orthogonal two-frequency grating projection[J]. Chinese Journal of Lasers, 2012, 39(5): 0508003.
武迎春, 曹益平, 史顺平, 等. 基于正交双频光栅投影的在线三维检测[J]. 中国激光, 2012, 39(5): 0508003.

【15】Li W S, Su X Y, Liu Z B. Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method[J]. Applied Optics, 2001, 40(20): 3326-3333.

【16】Bian X T, Cheng J, Zuo F, et al. A method of 3D shape measurement based on alignment grating projection[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011202.
边心田, 程菊, 左芬, 等. 基于光栅预校正的三维面形测量方法[J]. 激光与光电子学进展, 2017, 54(1): 011202.

【17】Xu X F, Cao Y P, Peng K. Pixel matching method in on-line three-dimensional measurement based on phase prediction[J]. Acta Optica Sinica, 2016, 36(6): 0612005.
许幸芬, 曹益平, 彭旷. 基于相位预测的在线三维测量像素匹配方法[J]. 光学学报, 2016, 36(6): 0612005.

【18】Lu M T, Su X Y, Cao Y P, et al. A method of both height mapping and camera calibration at the same time in modulation measuring profilometry[J]. Acta Optica Sinica, 2016, 36(6): 0612002.
卢明腾, 苏显渝, 曹益平, 等. 调制度测量轮廓术中高度映射与相机同时标定的方法[J]. 光学学报, 2016, 36(6): 0612002.

【19】Lee Y B, Kim M H. Integrated calibration of multiview phase-measuring profilometry[J]. Optics and Lasers in Engineering, 2017, 98: 118-122.

引用该论文

Peng Kuang,Cao Yiping,Wu Yingchun. Improved Dual-Frequency On-Line Phase Measuring Profilometry Based on Full-Cycle Equal Phase-Shift Algorithm[J]. Acta Optica Sinica, 2019, 39(4): 0412012

彭旷,曹益平,武迎春. 基于满周期等相移算法的改进双频在线相位测量轮廓术[J]. 光学学报, 2019, 39(4): 0412012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF