首页 > 论文 > 光学学报 > 39卷 > 4期(pp:416003--1)

均匀与混合蛾眼结构减反射性能的模拟

Simulation of Anti-Reflection Properties of Uniform and Hybrid Moth-Eye Structures

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用时域有限差分法, 对均匀蛾眼结构(UMS)和双混合蛾眼结构(BHMS)进行仿真, 分析底面直径和高度对反射率的影响规律, 比较了UMS与BHMS的减反射性能。基于反射率曲线和电场强度分布, 分析了BHMS优异的减反射性能。结果表明:在300~1200 nm波段, UMS的反射率随着高度的增大而减小, 随着底面直径的增大而先减小后增大; 当底部直径为250 nm时, 由不同高度的UMS组成的BHMS的平均反射率大于相应UMS的最小平均反射率; 由不同底面直径UMS组成的BHMS的减反射性能可以进一步提升。

Abstract

The finite-difference time-domain method is used to simulate uniform moth-eye structure (UMS) and bi-hybrid moth-eye structure (BHMS). The influences of height and bottom diameter on the reflectance are analyzed, and the anti-reflection properties of UMS and BHMS are compared. The superior anti-reflection property of BHMS is analyzed based on the reflectance curves and the electric field intensity distribution. The results show that the reflectance of UMS decreases with the increase of height, and decreases and then increases with the increase of bottom diameter in the wavelength range of 300-1200 nm. The average reflectance of BHMS consisting of UMS with different heights is greater than the minimum average reflectance of the corresponding UMS when the bottom diameter is 250 nm. The anti-reflection property of BHMS consisting of UMS with different bottom diameters can be further improved.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TK511

DOI:10.3788/aos201939.0416003

所属栏目:材料

基金项目:国家自然科学基金(51641102)

收稿日期:2018-11-07

修改稿日期:2018-12-13

网络出版日期:--

作者单位    点击查看

惠爽谋:江苏大学材料科学与工程学院, 江苏 镇江 212013
花银群:江苏大学材料科学与工程学院, 江苏 镇江 212013江苏大学机械工程学院, 江苏 镇江 212013
李志宝:江苏大学材料科学与工程学院, 江苏 镇江 212013

联系人作者:花银群(huayq@ujs.edu.cn)

【1】Jiao F, Huang Q Y, Ren W C, et al. Enhanced performance for solar cells with moth-eye structure fabricated by UV nanoimprint lithography[J]. Microelectronic Engineering, 2013, 103: 126-130.

【2】Kang S M, Jang S, Lee J K, et al. Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells[J]. Small, 2016, 12(18): 2443-2449.

【3】Hong E J, Byeon K J, Park H, et al. Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction[J]. Materials Science and Engineering B, 2009, 163(3): 170-173.

【4】Rao J, Winfield R, Keeney L. Moth-eye-structured light-emitting diodes[J]. Optics Communications, 2010, 283(11): 2446-2450.

【5】Liu S R, Wang L, Sun Y J, et al. Enhancement of light extraction efficiency of LED by bionic moth-eye structure with frustum of a cone[J]. Acta Optica Sinica, 2018, 38(1): 0122001.
刘顺瑞, 王丽, 孙艳军, 等. 利用截头圆锥形仿生蛾眼结构提高LED光提取效率[J]. 光学学报, 2018, 38(1): 0122001.

【6】Bernhard C G, Miller W H. A corneal nipple pattern in insect compound eyes[J]. Acta Physiologica Scan Dinavica, 1962, 56(3/4): 385-386.

【7】Pan F, Zhang W, Zhang D. Simulation of anti-reflection and light-trapping property of bio-inspired silicon structure[J]. Acta Optica Sinica, 2016, 36(5): 0516002.
潘峰, 张旺, 张荻. 仿生纳米硅结构减反射及陷光性能模拟研究[J]. 光学学报, 2016, 36(5): 0516002.

【8】Guo X D, Dong T T, Fu Y G, et al. Development of bionic moth-eye anti-reflective conical micro-nanostructure[J]. Infrared and Laser Engineering, 2017, 46(9): 0910002.
郭旭东, 董亭亭, 付跃刚, 等. 圆锥形仿生蛾眼抗反射微纳结构的研制[J]. 红外与激光工程, 2017, 46(9): 0910002.

【9】Kim B J, Kim J. Fabrication of GaAs subwavelength structure (SWS) for solar cell applications[J]. Optics Express, 2011, 19(S3): A326-A330.

【10】Wang X, Yu Y Q, Chu J R. Simulation and research on reflection properties of two- dimension micro/nano structure surface by FDTD method[J]. Acta Photonica Sinica, 2012, 41(2): 159-165.
王翔, 余彦清, 褚家如. 二维微纳米结构表面反射特性的时域有限差分法模拟研究[J]. 光子学报, 2012, 41(2): 159-165.

【11】Song Y M, Jang S J, Yu J S, et al. Bioinspired parabola subwavelength structures for improved broadband antireflection[J]. Small, 2010, 6(9): 984-987.

【12】Dewan R, Fischer S, Benno M R V, et al. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells[J]. Bioinspiration & Biomimetics, 2012, 7(1): 016003.

【13】Park S C, Kim N, Ji S, et al. Fabrication and characterization of moth-eye mimicking nanostructured convex lens[J]. Microelectronic Engineering, 2016, 158: 35-40.

【14】Woo L J, Guan X Y, Choi M, et al. Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications[J]. Solar Energy Materials and Solar Cells, 2015, 134: 45-53.

【15】Ko Y H, Jin L H, Cho Y H. Fabrication of moth eye structures via charged nanoparticle lithography with size and density control[J]. Thin Solid Films, 2011, 519(7): 2251-2254.

【16】Watanabe K, Yamamoto J, Tsuchiya R. Broadband-antireflective hybrid nanopillar array for photovoltaic application[J]. Journal of Applied Physics, 2015, 118(8): 085102.

【17】Yang L Y, Feng Q, Ng B, et al. Hybrid moth-eye structures for enhanced broadband antireflection characteristics[J]. Applied Physics Express, 2010, 3(10): 102602.

【18】Yang L M, Pan C Y, Lu F P, et al. Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method[J]. Optics & Laser Technology, 2015, 67: 72-77.

【19】Stavenga D G, Foletti S, Palasantzas G, et al. Light on the moth-eye corneal nipple array of butterflies[J]. Proceedings of the Royal Society B, 2006, 273(1587): 661-667.

【20】Ferry V, PolmanA, Atwater H. Light trapping in plasmonic solar cells[C]. Laser Science, California, 2011: LWE3.

【21】Zhu Z P, Qin Y Q. Nanowires array designed by means of two-dimension closed-form solution for antireflection[J]. Acta Physica Sinica, 2013, 62(15): 157801.
朱兆平, 秦亦强. 纳米线减反层的解析设计法[J]. 物理学报, 2013, 62(15): 157801.

引用该论文

Hui Shuangmou,Hua Yinqun,Li Zhibao. Simulation of Anti-Reflection Properties of Uniform and Hybrid Moth-Eye Structures[J]. Acta Optica Sinica, 2019, 39(4): 0416003

惠爽谋,花银群,李志宝. 均匀与混合蛾眼结构减反射性能的模拟[J]. 光学学报, 2019, 39(4): 0416003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF