首页 > 论文 > 中国激光 > 46卷 > 4期(pp:403001--1)

激光诱导融石英释放微粒的传播研究

Propagation of Laser-Induced Particles From Fused Silica

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了激光诱导微粒的三维空间传播规律。实验结果表明:光斑面积为0.8 mm2、激光分光比为25.4、能量平均值为8 mJ的单脉冲激光与融石英作用产生的微粒的直径为0.3~10.0 μm; 这些微粒大多沿中性面喷出, 散射角大, 浓度呈上高下低的分布形式; 微粒在水平面上的沉降占比沿纵向(入射光线反方向)和横向(垂直入射光线方向)单调递减, 但在纵向120 mm和360 mm处出现了局部高峰。微粒的运动距离与其直径成反比, 直径为0.3 μm的微粒的最远出射距离不大于622 mm。

Abstract

The propagation law of laser-induced particles in three-dimensional space is studied. The interaction of single pulse laser with fused silica can produce particles with diameter form 0.3 μm to 10.0 μm when the spot area is 0.8 mm2, laser splitting ratio is 25.4 and average energy is 8 mJ. Most of these particles are sprayed along the neutral surface with a large scattering angle, while their concentrations are lessened from top to bottom. The proportion of particle sediments located at substrate is monotonically decreasing along the longitudinal (reverse direction of incident light) and horizontal (vertical to direction of incident light) direction except for a local growth occurring at 120 mm and 360 mm in longitudinal direction. The distances of movement of particles are inversely proportional to their diameters, and the particles with diameter of 0.3 μm can achieve the distance no more than 622 mm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249;TH16

DOI:10.3788/cjl201946.0403001

所属栏目:材料与薄膜

基金项目:国家自然科学基金(51535003)

收稿日期:2018-10-23

修改稿日期:2018-11-20

网络出版日期:2018-12-26

作者单位    点击查看

彭舸:哈尔滨工业大学机电工程学院精密工程研究所, 黑龙江 哈尔滨 150001
卢礼华:哈尔滨工业大学机电工程学院精密工程研究所, 黑龙江 哈尔滨 150001
董喆:哈尔滨工业大学机电工程学院精密工程研究所, 黑龙江 哈尔滨 150001

联系人作者:卢礼华(lihual@hit.edu.cn)

【1】Haynam C A, Wegner P J, Auerbach J M, et al. National ignition facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.

【2】Yu H W, Jing F, Wei X F, et al. Status of prototype of SG-III high-power solid-state laser[J]. Proceedings of SPIE, 2009, 7131: 713112.

【3】Fleurot N, Cavailler C, Bourgade J L. The laser Mégajoule (LMJ) project dedicated to inertial confinement fusion: development and construction status[J]. Fusion Engineering and Design, 2005, 74(1/2/3/4): 147-154.

【4】Tian Y T, Wu R, Yang Y. Optical damage inspection based on local signal enhancement[J]. Chinese Journal of Lasers, 2018, 45(11): 1104001.
田玉婷, 邬融, 杨野. 基于局域信号增强的光学元件损伤检测[J]. 中国激光, 2018, 45(11): 1104001.

【5】Raman R N, Negres R A, Demos S G. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses[J]. Applied Physics Letters, 2011, 98(5): 051901.

【6】Wegner P J, Auerbach J M, Biesiada T A, et al. NIF final optics system: frequency conversion and beam conditioning[J]. Proceedings of SPIE, 2004, 5341: 180-189.

【7】Tan B, Huang M, Zhu Q B, et al. Method on elements automatic identification of spectral peaks in laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(8): 0811002.
檀兵, 黄敏, 朱启兵, 等. 激光诱导击穿光谱谱峰元素自动识别方法研究[J]. 中国激光, 2018, 45(8): 0811002.

【8】Bude J, Carr C W, Miller P E, et al. Particle damage sources for fused silica optics and their mitigation on high energy laser systems[J]. Optics Express, 2017, 25(10): 11414.

【9】Demos S, Staggs M, Minoshima K, et al. Characterization of laser induced damage sites in optical components[J]. Optics Express, 2002, 10(25): 1444-1450.

【10】Norton M A, Donohue E E, Feit M D, et al. Growth of laser damage in SiO2 under multiple wavelength irradiation[J]. Proceedings of SPIE, 2006, 5991: 599108.

【11】Norton M A, Hrubesh L W, Wu Z L, et al. Growth of laser-initiated damage in fused silica at 351 nm[J]. Proceedings of SPIE, 2001, 4347: 468-469.

【12】Demos S G, Negres R A, Raman R N, et al. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 2013, 7(3): 444-452.

【13】Feit M D, Rubenchik A M, Faux D R, et al. Modeling of laser damage initiated by surface contamination[J]. Proceedings of SPIE, 1996, 2966: 417-425.

【14】Raman R N, Elhadj S, Negres R A, et al. Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses[J]. Optics Express, 2012, 20(25): 27708-27724.

【15】Papernov S, Schmid A W. Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation[J]. Journal of Applied Physics, 2002, 92(10): 5720-5728.

【16】Bercegol H, Bonneau F, Bouchut P, et al. Laser ablation of fused silica induced by gold nanoparticles: comparison of simulations and experiments at λ=351 nm[J]. Proceedings of SPIE, 2002, 4760: 1055-1067.

【17】Matthews M J, Feigenbaum E, Demos S G, et al. Laser-matter coupling mechanisms governing particulate-induced damage on optical surfaces[J]. Proceedings of SPIE, 2016, 10014: 1001402.

【18】Shen N, Bude J D, Carr C W. Model laser damage precursors for high quality optical materials[J]. Optics Express, 2014, 22(3): 3393.

【19】Demos S G, Negres R A, Raman R N, et al. Morphology of ejected debris from laser super-heated fused silica following exit surface laser-induced damage[J]. Proceedings of SPIE, 2015, 9632: 96320S.

【20】Ancona A, Dring S, Jauregui C, et al. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers[J]. Optics Letters, 2009, 34(21): 3304.

【21】Demos S G, Negres R A, Raman R N, et al. Relaxation dynamics of nanosecond laser superheated material in dielectrics[J]. Optica, 2015, 2(8): 765-772.

【22】Peng Z T. Research on on-line detection technology of laser damage for optical components of high-power laser complex optical components[D]. Mianyang: China Academy of Engineering Physics, 2011.
彭志涛. 强激光复杂光机组件光学元件激光损伤在线检测技术研究[D]. 绵阳: 中国工程物理研究院, 2011.

【23】Amoruso S, Bruzzese R, Spinelli N, et al. Generation of silicon nanoparticles via femtosecond laser ablation in vacuum[J]. Applied Physics Letters, 2004, 84(22): 4502-4504.

【24】Demos S G, Negres R A. Morphology of ejected particles and impact sites on intercepting substrates following exit-surface laser damage with nanosecond pulses in silica[J]. Optical Engineering, 2017, 56(1): 011016.

【25】Génin F Y, Feit M D, Kozlowski M R, et al. Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles[J]. Applied Optics, 2000, 39(21): 3654.

【26】Wong J, Ferriera J L, Lindsey E F, et al. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses[J]. Journal of Non-Crystalline Solids, 2006, 352(3): 255-272.

【27】Genin F Y, Sheehan L M, Yoshiyama J M, et al. Statistical study of UV-laser-induced failure of fused silica[J]. Proceedings of SPIE, 1998, 3244: 155-164.

【28】Li Y H, Zhao Y, Li X M, et al. In situ measurement of the particle size distribution of the fragmentation product of laser-shock-melted aluminum using in-line picosecond holography[J]. AIP Advances, 2016, 6(2): 025208.

【29】Shen C, Cheng X G, Xu Z J, et al. Observation of particle ejection behavior following laser-induced breakdown on the rear surface of a sodium chloride optical window[J]. Optical Engineering, 2017, 56(1): 011009.

【30】Demos S G, Carr C W, Cross D A. Mechanisms of surface contamination in fused silica by means of laser-induced electrostatic effects[J]. Optics Letters, 2017, 42(13): 2643-2646.

【31】Suk H, Hur M S, Jang H, et al. Review of basic physics of laser-accelerated charged-particle beams[C]. AIP Conference Proceedings, 2006: 165-169.

引用该论文

Peng Ge,Lu Lihua,Dong Zhe. Propagation of Laser-Induced Particles From Fused Silica[J]. Chinese Journal of Lasers, 2019, 46(4): 0403001

彭舸,卢礼华,董喆. 激光诱导融石英释放微粒的传播研究[J]. 中国激光, 2019, 46(4): 0403001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF