首页 > 论文 > 中国激光 > 46卷 > 4期(pp:411001--1)

扩散火焰中燃料种类对碳烟演变过程的影响

Effects of Fuel Types on Soot Evolution in Diffusion Flames

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用激光诱导炽光和激光诱导荧光技术研究了燃料种类对碳烟演变过程的影响。以CH4、C2H4、C3H8的扩散火焰为研究对象, 测量了碳烟的体积分数、粒径、颗粒数浓度以及多环芳烃相对浓度的二维分布。结果表明: CH4、C2H4、C3H8火焰的碳转化因子分别为0.0058、0.144、0.043; 碳烟颗粒的平均粒径为9.2, 20.8, 14.7 nm, 对应的颗粒数浓度分别为6.9×1021, 8.7×1021, 7.8×1021 m-3; 对于含有较多碳原子或不饱和键的燃料, 碳烟和环芳烃的生成演变过程更为迅速; 比表面增长速率和生长时间的综合变化导致C2H4火焰中碳烟颗粒的粒径最大, C3H8次之, CH4最小。

Abstract

The effects of fuel types on the soot evolution are studied using laser-induced incandescence (LII) and laser-induced fluorescence (LIF) technologies. The diffusion flames from methane, ethylene and propane are selected as research objectives, and the two-dimensional distributions of volume fraction, primary particle size, and particle number concentration of soot as well as the relative concentration of polycyclic aromatic hydrocarbon (PAH) are measured. The measurement results show that the carbon conversion factors in methane, ethylene and propane flames are 0.0058, 0.144 and 0.043; the average particle sizes of soot are 9.2, 20.8 and 14.7 nm, and the corresponding particle number concentrations are 6.9×1021, 8.7×1021 and 7.8×1021 m-3, respectively. It is found that the PAH and soot formation are fast in the flame for the fuel with the unsaturated bond or more carbon atoms. The comprehensive changes in both specific surface growth rate and growth time for the soot result in the largest soot particle size in ethylene flame and followed by the propane flame and methane flame.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/cjl201946.0411001

所属栏目:光谱学

基金项目:国家重点研发计划(2018YFB0605200)、国家自然科学基金(51206144)、国家自然科学基金创新研究群体科学基金(51621005)、高等学校学科创新引智计划项目(B08026)

收稿日期:2018-11-01

修改稿日期:2018-11-22

网络出版日期:2018-12-25

作者单位    点击查看

吴建:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
陈玲红:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
周剑武:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
张健夫:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
吴学成:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
岑可法:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027

联系人作者:陈玲红(chenlh@zju.edu.cn)

【1】Yan M M, Wu J, Shen J D, et al. Source apportionment of carbonaceous aerosol based on aethalometer model[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050102.
颜明明, 吴建, 沈建东, 等. 基于黑碳仪模型的含碳气溶胶来源解析[J]. 激光与光电子学进展, 2017, 54(5): 050102.

【2】Xu S, Bai L H, Fan M, et al. Optical properties of soot aggregates and mixture particles with water coatings[J]. Acta Optica Sinica, 2017, 37(2): 0201002.
徐澍, 白连红, 范萌, 等. 黑碳团簇及具有包覆水层混合态粒子的光学特性[J].光学学报, 2017, 37(2): 0201002.

【3】Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot: a review of chemical reaction pathways[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 565-608.

【4】Smyth K C, Shaddix C R, Everest D A. Aspects of soot dynamics as revealed by measurements of broadband fluorescence and flame luminosity in flickering diffusion flames[J]. Combustion and Flame, 1997, 111(3): 185-207.

【5】Furuhata T, Kobayashi Y, Hayashida K, et al. Behavior of PAHs and PM in a diffusion flame of paraffin fuels[J]. Fuel, 2012, 91(1): 16-25.

【6】Hwang J Y, Lee W, Kang H G, et al. Synergistic effect of ethylene–propane mixture on soot formation in laminar diffusion flames[J]. Combustion and Flame, 1998, 114(3/4): 370-380.

【7】Lee S M, Yoon S S, Chung S H. Synergistic effect on soot formation in counterflow diffusion flames of ethylene-propane mixtures with benzene addition[J]. Combustion and Flame, 2004, 136(4): 493-500.

【8】Yoon S S, Lee S M, Chung S H. Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylene-base counterflow diffusion flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1417-1424.

【9】Kailasanathan R K A, Yelverton T L B, Fang T, et al. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames[J]. Combustion and Flame, 2013, 160(3): 656-670.

【10】Michelsen H A. Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs[J]. Proceedings of the Combustion Institute, 2017, 36(1): 717-735.

【11】Tang Q L, Zhang P, Liu H F, et al. Quantitative measurements of soot volume fractions in diesel engine using laser-induced incandescence method[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 980-988.
唐青龙, 张鹏, 刘海峰, 等. 利用激光诱导炽光法定量测量柴油机缸内燃烧过程碳烟体积分数[J]. 物理化学学报, 2015, 31(5): 980-988.

【12】Will S, Schraml S, Leipertz A. Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence[J]. Optics Letters, 1995, 20(22): 2342-2344.

【13】Li H M, He X, Zheng L, et al. Study on the measurement of soot particle size by laser induced incandescence[J]. Journal of Engineering Thermophysics, 2013, 34(7): 1389-1392.
李红梅, 何旭, 郑亮, 等. 激光诱导炽光技术用于碳烟粒径测试的研究[J]. 工程热物理学报, 2013, 34(7): 1389-1392.

【14】Liu H F, Zhang P, Liu X L, et al. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF[J]. Combustion and Flame, 2018, 188: 129-141.

【15】Oh K C, Shin H D. The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames[J]. Fuel, 2006, 85(5/6): 615-624.

【16】Michelsen H A, Liu F, Kock B F, et al. Modeling laser-induced incandescence of soot: a summary and comparison of LII models[J]. Applied Physics B, 2007, 87(3): 503-521.

【17】Melton L A. Soot diagnostics based on laser heating[J].Applied Optics, 1984, 23(13): 2201-2208.

【18】Schulz C, Kock B F, Hofmann M, et al. Laser-induced incandescence: recent trends and current questions[J]. Applied Physics B, 2006, 83(3): 333-354.

【19】Wu J, Chen L H, Yan M M, et al. Soot particle sizing based on analytical formula derived from laser-induced incandescence decay signals[J]. Applied Physics Letters, 2017, 110(4): 041903.

【20】Liu F, Yang M, Hill F A, et al. Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII[J]. Applied Physics B, 2006, 83(3): 383-395.

【21】Bejaoui S, Mercier X, Desgroux P, et al. Laser induced fluorescence spectroscopy of aromatic species produced in atmospheric sooting flames using UV and visible excitation wavelengths[J]. Combustion and Flame, 2014, 161(10): 2479-2491.

【22】Desgroux P, Mercier X, Thomson K A. Study of the formation of soot and its precursors in flames using optical diagnostics[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1713-1738.

【23】Chen L H, Zhou J W, Zheng X J, et al. Effects of carbon dioxide addition on the soot particle sizes in an Ethylene/Air flame[J]. Aerosol and Air Quality Research, 2017, 17(10): 2522-2532.

【24】Lemaire R, Bejaoui S, Therssen E. Study of soot formation during the combustion of Diesel, rapeseed methyl ester and their surrogates in turbulent spray flames[J]. Fuel, 2013, 107: 147-161.

【25】Gülder  L, Intasopa G, Joo H I, et al. Unified behaviour of maximum soot yields of methane, ethane and propane laminar diffusion flames at high pressures[J]. Combustion and Flame, 2011, 158(10): 2037-2044.

【26】Roper F G. The prediction of laminar jet diffusion flame sizes: part I. Theoretical model[J]. Combustion and Flame, 1977, 29: 219-226.

【27】Santoro R J, Yeh T T, Horvath J J, et al. The transport and growth of soot particles in laminar diffusion flames[J]. Combustion Science and Technology, 1987, 53(2/3): 89-115.

【28】Smooke M, Long M, Connelly B, et al. Soot formation in laminar diffusion flames[J]. Combustion and Flame, 2005, 143(4): 613-628.

【29】Dworkin S B, Zhang Q G, Thomson M J, et al. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame[J]. Combustion and Flame, 2011, 158(9): 1682-1695.

【30】Megaridis C M, Dobbins R A. Soot aerosol dynamics in a laminar ethylene diffusion flame[J]. Symposium (International) on Combustion, 1989, 22(1): 353-362.

引用该论文

Wu Jian,Chen Linghong,Zhou Jianwu,Zhang Jianfu,Wu Xuecheng,Cen Kefa. Effects of Fuel Types on Soot Evolution in Diffusion Flames[J]. Chinese Journal of Lasers, 2019, 46(4): 0411001

吴建,陈玲红,周剑武,张健夫,吴学成,岑可法. 扩散火焰中燃料种类对碳烟演变过程的影响[J]. 中国激光, 2019, 46(4): 0411001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF