首页 > 论文 > 红外与激光工程 > 48卷 > 3期(pp:306005--1)

激光光内送粉仰面熔覆工艺研究及优化

Process study and optimization of upward cladding by laser inside powder feeding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用激光光内送粉熔覆技术,在与水平方向成大于90°的仰面基体下表面进行了单道熔覆实验研究。分析了仰角、保护气压力与光粉耦合处粉束直径之间的关系; 研究了仰面姿态下熔覆层的宽度、高度以及熔池的流淌下垂趋势受激光功率、扫描速度的影响规律。研究发现, 光粉耦合处粉束直径随仰角的增大而变大, 随保护气压力的增大而减小。基体仰面与水平姿态下, 工艺参数对熔覆层的宽度、高度的影响规律保持了较好的一致性; 熔池在重力作用下, 激光功率、扫描速度以及仰角的变化对熔覆层高度的影响更加显著; 熔道顶点的偏移随激光功率的减小、扫描速度的增大和仰角的增大而逐渐增小。保持送粉量和离焦量不变, 利用优化后的激光功率、扫描速度, 以及保护气压力, 获得了最大仰角达150°、且具有较好尺寸精度和组织性能的激光熔覆立体成形件。

Abstract

The cladding surface of the substrate was fixed at an upward angle which was greater than 90° in relative with the horizontal surface, where the single cladding tracks were formed by the laser inside powder feeding technology. The relationship among the tilted angle of the powder feeding nozzle, the pressure of the protection air and the powder spot diameter at the working plane were studied based on the experimental data. The effect of laser power and scanning velocity on the height and width of the tracks was analyzed, while the powder feeding rate and defocus amount kept unchanged. The liquid molten pool tended to drop by the drag force of its gravity, and the height peak offset was also studied. With the increase of the titled upward angle, the powder spot size at the working plane became larger, while the pressure of the protection air did the other way. For upward cladding, the effect of process parameters on the width and height shows a good accordance with the horizontal cladding. However, the height of the cladding layer was dramatically affected by the laser power, scanning speed and the tilted angle. The peak height offset of the molten pool got smaller with the decrease of the power and increase of the scanning speed and tilted angle. By using the optimized process parameters and the proper protection air pressure, a 3D part with the maximum titled angle of 150° was formed which also had the good feature accuracy and fine microstructure.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/irla201948.0306005

所属栏目:激光技术及应用

基金项目:国家重点研发计划(2016YFB1100301); 国家自然科学基金(51675359); 苏州市科技计划(SYG201541)

收稿日期:2018-01-30

修改稿日期:2018-03-27

网络出版日期:--

作者单位    点击查看

史建军:苏州大学 机电工程学院, 江苏 苏州 215021
石 拓:苏州大学 机电工程学院, 江苏 苏州 215021
石世宏:苏州大学 机电工程学院, 江苏 苏州 215021
朱刚贤:苏州大学 机电工程学院, 江苏 苏州 215021
杨 轼:苏州大学 机电工程学院, 江苏 苏州 215021
傅戈雁:苏州大学 机电工程学院, 江苏 苏州 215021
鹿 霖:苏州大学 机电工程学院, 江苏 苏州 215021苏州工业职业技术学院 机电工程系, 江苏 苏州 215104

联系人作者:史建军(sdj004@hotmail.com)

备注:史建军(1981-), 男, 博士生, 主要从事激光快速成形工艺与机理方面的研究。

【1】Griffith M L, Keicher D M, Atwood C L, et al. Free form fabrication of metallic components using laser engineered net shaping(LENS)[C]// Proceedings of the Solid Freeform Fabrication Symposium, 1996: 125-132.

【2】Huang W D, Li Y M, Feng L P, et al. Laser solid forming of metal powder materials[J]. Journal of Materials Engineering, 2002, 30(3): 40-43, 27. (in Chinese)

【3】Yang Guang, Ding Linlin, Wang Xiangming, et al. Influence of scanning path on residual stress and distortion of laser repairing titanium alloy[J]. Infrared and Laser Engineering, 2015, 44(10): 2926-2932. (in Chinese)

【4】Bian Hongyou, Zhao Xiangpeng, Li Ying, et al. Experimental study on laser deposition repair GH4169 alloy component [J]. Infrared and Laser Engineering, 2016, 45(2): 126-131. (in Chinese)

【5】Wang Yanqin, Shen Jingxing, Wu Haiquan. Application and research status of alternative materials for 3D-printing Technology[J]. Journal of Aeronautical Materials, 2016, 36(4): 89-98. (in Chinese)

【6】Song Changhui, Yang Yongqiang, Zhang Manhui, et al. Redesign and selective laser melting manufacturing of femoral component based on digital 3D technology [J]. Optics & Precision Engineering, 2014, 22(8): 2117-2126. (in Chinese)

【7】Paul C P, Mishra S K, Kumar A, et al. Laser rapid manufacturing on vertical surfaces: Analytical and experimental studies [J]. Surface & Coatings Technology, 2013, 224(12): 18-28.

【8】Deng Zhiqiang, Shi Shihong, Zhou Bin, et al. Laser cladding forming of arcuate cantilevered entity part [J]. Infrared and Laser Engineering, 2017, 46(10): 1006004. (in Chinese)

【9】Nowotny S, Scharek S, Beyer E, et al. Laser beam build-up welding: precision in repair, surface cladding, and direct 3D metal deposition [J]. Journal of Thermal Spray Technology, 2007, 16(3): 344-348.

【10】Yang Xichen. Laser processing robot and its industrial applications[J]. Chinese J Lasers, 2009, 36(11): 2780-2798. (in Chinese)

【11】Meng Weidong, Shi Shihong, Shi Tuo, et al. Forming technology research of laser accumulation of reducing solid of revolution with changing laserhead posture[J]. Chinese J Lasers, 2015, 42(10): 1003006. (in Chinese)

【12】Shi Tuo, Wang Yiqing, Lu Bingheng, et al. Laser cladding forming of cantilevered thin-walled part based on hollow-laser beam inside powder feeding technology [J]. Chinese J Lasers, 2015, 42(10): 1003003. (in Chinese)

【13】Shi Shihong, Fu Geyan, Wang Anjun, et al. Internal powder feeding technology and nozzle for laser molding manufacture: China, CN2006101164131[P]. 2006-09-22. (in Chinese)

【14】Wang Lifang, Zhu Gangxian, Shi Shihong, et al. Influence of shielding gas pressure on flow field of the inside-laser powder feeding nozzle[J]. Chinese J Lasers, 2013, 40(s1): s103007. (in Chinese)

【15】Wang Mingdi. Research on mechanism and process of laser cladding rapid manufacturing using coaxial inside-beam powder feeding [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 37-47.

引用该论文

Shi Jianjun,Shi Tuo,Shi Shihong,Zhu Gangxian,Yang Shi,Fu Geyan,Lu Lin. Process study and optimization of upward cladding by laser inside powder feeding[J]. Infrared and Laser Engineering, 2019, 48(3): 0306005

史建军,石 拓,石世宏,朱刚贤,杨 轼,傅戈雁,鹿 霖. 激光光内送粉仰面熔覆工艺研究及优化[J]. 红外与激光工程, 2019, 48(3): 0306005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF