首页 > 论文 > 光电子技术 > 39卷 > 1期(pp:26-29)

一种增强型虹膜图像质量评价算法

An Enhanced Algorithm on Iris Image Quality Assessment

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种增强型虹膜图像质量评价算法, 针对远距离移动中虹膜识别系统采集的受干扰虹膜图像, 通过量化单帧图像感兴趣区域的清晰度、可用度和对比度等质量指标, 计算序列图像的联合加权质量得分, 对虹膜图像序列的可用性进行评价, 有效筛除获取的低质虹膜图像序列。实验表明, 该算法提升了虹膜识别系统图像质量评价的准确性和可靠性, 从而能有效提升系统的鲁棒性和识别效率。

Abstract

An enhanced algorithm on iris image quality assessment was proposed. For the disturbed iris images captured by the iris recognition system utilized for long-distance moving iris recognition, the quality indices of the resolution, availability, and contrast of the region of interest of the single frame iris image were quantified. And the joint weighted quality scores of sequential images were calculated, which were used to effectively evaluate the usability of iris image sequences and screen out the unqualified low-quality iris image sequences. Experiments show that the algorithm improves the accuracy and reliability of image quality assessment of the iris recognition system, which can effectively improve the robustness and recognition efficiency of the system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN911.73

DOI:10.19453/j.cnki.1005-488x.2019.01.006

所属栏目:研究与试制

收稿日期:2018-10-12

修改稿日期:--

网络出版日期:--

作者单位    点击查看

郭慧杰:北京无线电计量测试研究所, 北京 100854

联系人作者:郭慧杰(ghj203@126.com)

备注:郭慧杰(1984-), 男, 高级工程师, 博士, 主要从事图像处理与模式识别方面的研究。(E-mail: ghj203@126.com)

【1】田启川. 虹膜识别[M]. 北京: 清华大学出版社, 2017: 1-24.

【2】王立君, 徐中宇, 孙秋成. 人体虹膜图像信息处理与识别技术[M]. 北京: 中国水利水电出版社, 2014: 1-15.

【3】Daugman J. New methods in iris recognition[J]. IEEE Transactions on System, Man, Cybernetics, 2007, B: 37(5): 1167-1175.

【4】Johnson P, Lopez-Meyer P, Sazonova N, et al. Quality in face and iris research ensemble (Q-FIRE)[J]. Proc. BTAS, 2010, 1-6.

【5】Galbally J, Marcel S, Fierrez J. Image quality assessment for fake biometric detection: Application to iris fingerprint and face recognition[J]. IEEE Trans. Image Process., 2014, 23(2): 710-724.

【6】Deshpande A, Patavardhan P. Super resolution and recognition of long range captured multi-frame iris images[J]. IET Biometrics, 2017, 6(5): 360-368.

【7】Kaur B, Singh S, Kumar J. Robust iris recognition using moment invariants[J]. Wireless Personal Communications, 2018, 99(2): 799-828.

【8】Liu J, Sun Z, Tan T. Iris image deblurring based on refinement of point spread function[J]. Proc. CCBR, 2012, 184-192.

【9】Nalla P, Kumar A. Toward more accurate iris recognition using cross-spectral matching[J]. IEEE Transactions on Image Processing, 2017, 26(1): 208-221.

【10】Liu N, Liu J, Sun Z, et al. A code-level approach to heterogeneous iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(10): 2373-2386.

【11】Du Y, Belcher C, Zhou Z, et al. Feature correlation evaluation approach for iris feature quality measure[J]. Signal Process., 2010, 90(4): 1176-1187.

【12】Nguyen K, Fookes C, Sridharan S, et al. Quality-driven super-resolution for less constrained iris recognition at a distance and on the move[J]. IEEE Trans. Inf. Forensics Security, 2011, 6(4): 1248-1258.

【13】Nguyen K, Fookes C, Jillela R, et al. Long range iris recognition: A survey[J]. Pattern Recognition, 2017, 72: 123-143.

引用该论文

GUO Huijie. An Enhanced Algorithm on Iris Image Quality Assessment[J]. Optoelectronic Technology, 2019, 39(1): 26-29

郭慧杰. 一种增强型虹膜图像质量评价算法[J]. 光电子技术, 2019, 39(1): 26-29

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF