首页 > 论文 > 中国激光 > 46卷 > 4期(pp:404008--1)

基于声光效应的海水声速测量

Seawater Sound Velocity Measurement Based on Acousto-Optic Effect

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光学频率梳与超声脉冲之间的声光效应, 提出了一种海水声速直接测量的方法。根据光学频率梳模间拍频的相位测量了超声脉冲的飞行距离,根据脉冲声光效应引起的零级光的强度变化测量了超声脉冲的飞行时间。搭建了基于马赫-曾德尔干涉仪的测量装置。实验结果表明,该方法可以在实验室条件下实现高精度的海水声速测量,测量不确定度优于5 cm/s。

Abstract

Based on the acousto-optic effect between the optical frequency comb and the ultrasonic pulse, we propose a method for direct measurement of seawater sound velocity. We measure the flight distance of the ultrasonic pulse according to the phase of the beat frequency between the optical frequency combs, and measure the flight time of the ultrasonic pulse based on the intensity variation of the zero-order light caused by the pulse acousto-optic effect. A measuring device based on Mach-Zehnder interferometer is built. The experimental results show that this method can achieve high precision seawater sound velocity measurement in lab, and the measurement uncertainty is better than 5 cm/s.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0404008

所属栏目:测量与计量

基金项目:国家自然科学基金(61505140)、国家重点研发计划(2016YFC1401203)、 天津市自然科学基金面上项目(18JCYBJC17100)、天津市教委科研计划项目(JWK1616)

收稿日期:2018-10-18

修改稿日期:2018-11-15

网络出版日期:2019-01-08

作者单位    点击查看

薛彬:天津大学海洋科学与技术学院, 天津 300072
王志洋:天津大学海洋科学与技术学院, 天津 300072
张凯:天津大学海洋科学与技术学院, 天津 300072
郑字佳:天津大学海洋科学与技术学院, 天津 300072
吴翰钟:天津大学海洋科学与技术学院, 天津 300072
翟京生:天津大学海洋科学与技术学院, 天津 300072

联系人作者:吴翰钟(wuhz@tju.edu.cn)

【1】Dosso S E, Dettmer J. Studying the sea with sound[J]. The Journal of the Acoustical Society of America, 2013, 133(5): 3223.

【2】Stephenson E B. Velocity of sound in sea water[J]. Physical Review, 1923, 21(2): 181-185.

【3】Wood B, Browne E. A radio-acoustic method of locating positions at sea: application to navigation and to hydrographical survey[J]. Proceedings of the Physical Society of London, 1922, 35(1): 183-193.

【4】Klein E, Hershberger W D. Supersonic interferometers[J]. Physical Review, 1931, 37(6): 760-774.

【5】Kuwahara S. Velocity of sound in sea water and calculation of the velocity for use in sonic sounding[J]. The International Hydrographic Review, 1939, 2: 124-139

【6】Li Z W, Zhu J C, Li T, et al. An absolute instrument for determination of the speed of sound in water[J]. Review of Scientific Instruments, 2016, 87(5): 055107.

【7】Millero F J, Kubinski T. Speed of sound in seawater as a function of temperature and salinity at one atmosphere[J]. The Journal of the Acoustical Society of America, 1975, 57(2): 312-319.

【8】Chen C T, Millero F J. Reevaluation of Wilson′s sound-speed measurements for pure water[J]. The Journal of the Acoustical Society of America, 1976, 60(6): 1270-1273.

【9】Chen C T, Millero F J. Speed of sound in seawater at high pressures[J]. The Journal of the Acoustical Society of America, 1977, 62(5): 1129-1135.

【10】del Grosso V A, Mader C W. Speed of sound in pure water[J]. The Journal of the Acoustical Society of America, 1972, 52(5B): 1442-1446.

【11】del Grosso V A, Mader C W. Speed of sound in sea-water samples[J]. The Journal of the Acoustical Society of America, 1972, 52(3B): 961-974.

【12】del Grosso V A. New equation for the speed of sound in natural waters (with comparisons to other equations)[J]. The Journal of the Acoustical Society of America, 1974, 56(4): 1084-1091.

【13】Wilson W D. Speed of sound in distilled water as a function of temperature and pressure[J]. The Journal of the Acoustical Society of America, 1959, 31(8): 1067-1072.

【14】Wilson W D. Speed of sound in sea water as a function of temperature, pressure, and salinity[J]. The Journal of the Acoustical Society of America, 1960, 32(6): 641-644.

【15】Wilson W D. Extrapolation of the equation for the speed of sound in sea water[J]. The Journal of the Acoustical Society of America, 1962, 34(6): 866.

【16】von Rohden C, Fehres F, Rudtsch S. Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater[J]. The Journal of the Acoustical Society of America, 2015, 138(2): 651-662.

【17】Hirschberg J G, Byrne J D, Wouters A W, et al. Speed of sound and temperature in the ocean by Brillouin scattering[J]. Applied Optics, 1984, 23(15): 2624-2628.

【18】Liu D H, Xu J F, Li R S, et al. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd: YAG laser[J]. Optics Communications, 2002, 203: 335-340.

【19】Liu D H, Wang H Y, Zhou J. Measurements of sound speed in sea water with different salinity and temperature by Brillouin scattering method[J]. Chinese Journal of Lasers, 2000, 27(4): 381-384.
刘大禾, 汪华英, 周静. 布里渊散射法测量盐度及温度不同的海水中的声速[J]. 中国激光, 2000, 27(4):381-384.

【20】Zheng X, Zhang Y, He M G. Speed of sound measurement in ethyl tert-butyl ether and tert-amyl methyl ether by Brillouin light scattering[J]. Fluid Phase Equilibria, 2016, 418: 108-118.

【21】Zheng X, Zhang Y, He M G, et al. Speed of sound measurement and prediction of ethyl hexanoate and ethyl octanoate at temperatures from (293.15 to 473.15) K and pressures from (0.1 to 10) MPa[J]. The Journal of Chemical Thermodynamics, 2016, 97: 1-8.

【22】Fry E S. Remote sensing of sound speed in the ocean via Brillouin scattering[J]. Proceedings of SPIE, 2012, 8372: 837207.

【23】Lü T, Duan Y X, Xiang J F, et al. Temperature characteristics of 780 nm acousto-optic modulator[J]. Acta Optica Sinica, 2017, 37(8): 0812001.
吕挺, 段玉雄, 项静峰, 等. 780 nm声光调制器的温度特性[J]. 光学学报, 2017, 37(8): 0812001.

【24】Bai L L, Wen X, Yang Y L, et al. 397.5 nm ultra-violet laser power stabilization based on feedback control via acousto-optic frequency shifter[J]. Chinese Journal of Lasers, 2018, 45(10): 1001008.
白乐乐, 温馨, 杨煜林, 等. 基于声光频移器反馈控制的397.5 nm紫外激光功率稳定研究[J]. 中国激光, 2018, 45(10): 1001008.

【25】He H Y, Sun J F, Hou P P, et al. Angle error detection of local oscillator nutation based on acousto-optic deflector in fine tracking system[J]. Chinese Journal of Lasers, 2018, 45(10): 1006001.
贺红雨, 孙建锋, 侯培培, 等. 精跟踪中基于声光偏转器的本振光章动探测角度误差方法[J]. 中国激光, 2018, 45(10): 1006001.

【26】Savage N. Acousto-optic devices[J]. Nature Photonics, 2010, 4(10): 728-729.

【27】Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 2016, 10(4): 227-238.

【28】Zhang C G, Wang H, Zhang Z H, et al. Non-radio-frequency signal tuned acousto-optic tunable filter[J]. Optics Express, 2018, 26(2): 1049-1054.

【29】Evans G J, Kirkby P A, Naga Srinivas Nadella K M, et al. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens[J]. Optics Express, 2015, 23(18): 23493-23510.

【30】Tadesse S A, Li M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies[J]. Nature Communications, 2014, 5: 5402.

【31】Lejman M, Vaudel G, Infante I C, et al. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics[J]. Nature Communications, 2016, 7: 12345.

【32】Rolland Q, Dupont S, Gazalet J, et al. Simultaneous bandgaps in LiNbO3 phoxonic crystal slab[J]. Optics Express, 2014, 22(13): 16288-16297.

【33】Psarobas I E, Papanikolaou N, Stefanou N, et al. Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity[J]. Physical Review B, 2010, 82(17): 174303.

【34】Maldovan M, Thomas E L. Simultaneous localization of photons and phonons in two-dimensional periodic structures[J]. Applied Physics Letters, 2006, 88(25): 251907.

【35】Ma T X, Wang Y S, Wang Y F, et al. Three-dimensional dielectric phoxonic crystals with network topology[J]. Optics Express, 2013, 21(3): 2727-2732.

【36】Chiu C C, Chen W M, Sung K W, et al. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity[J]. Optics Express, 2017, 25(6): 6076-6091.

【37】Hsu J C, Lu T Y, Lin T R. Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior[J]. Optics Express, 2015, 23(20): 25814-25826.

【38】Yuan J W, Zhang C G, Wang H, et al. Rapid microscopic spectral imaging of lung cancer tissue based on acousto-optic tunable filter[J]. Chinese Journal of Lasers, 2018, 45(4): 0407003.
原江伟, 张春光, 王号, 等. 基于声光可调滤波器的肺癌组织快速显微光谱成像[J]. 中国激光, 2018, 45(4): 0407003.

【39】Resink S G, Hondebrink E, Steenbergen W. Towards acousto-optic tissue imaging with nanosecond laser pulses[J]. Optics Express, 2014, 22(3): 3564-3571.

【40】Laudereau J B, Grabar A A, Tanter M, et al. Ultrafast acousto-optic imaging with ultrasonic plane waves[J]. Optics Express, 2016, 24(4): 3774-3789.

【41】Moharam M G, Young L. Criterion for Bragg and Raman-Nath diffraction regimes[J]. Applied Optics, 1978, 17(11): 1757-1759.

【42】Wu H Z, Zhang F M, Cao S Y, et al. Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser[J]. Optics Express, 2014, 22(9): 10380-10397.

【43】Miao R C, Yang Z L, Zhu J T, et al. Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction[J]. Applied Physics Letters, 2002, 80(17): 3033-3035.

【44】Miao Y, Wang S P. Nonlinear acoustic-optical effect and extraordinary diffraction distribution in liquid surface[J]. Chinese Physics Letters, 2013, 30(12): 124304.

【45】He L P, Zhu F L, Chen Y M, et al. Ultrasonic power measurement system based on acousto-optic interaction[J]. Review of Scientific Instruments, 2016, 87(5): 054903.

【46】Weng C C, Zhang X M. Fluctuations of optical phase of diffracted light for Raman-Nath diffraction in acousto-optic effect[J]. Chinese Physics B, 2015, 24(1): 014210.

引用该论文

Xue Bin,Wang Zhiyang,Zhang Kai,Zheng Zijia,Wu Hanzhong,Zhai Jingsheng. Seawater Sound Velocity Measurement Based on Acousto-Optic Effect[J]. Chinese Journal of Lasers, 2019, 46(4): 0404008

薛彬,王志洋,张凯,郑字佳,吴翰钟,翟京生. 基于声光效应的海水声速测量[J]. 中国激光, 2019, 46(4): 0404008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF