光电子快报(英文版), 2019, 15 (2): 127, Published Online: Apr. 16, 2019  

Organic light-emitting devices based on 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl as a spacer between dual ultrathin layers

Author Affiliations
Department of Physics, Quanzhou Normal University, Quanzhou 362000, China
Abstract
White organic light-emitting devices (WOLEDs) were fabricated by using a highly blue fluorescent dye of 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl (DPVBi) and a red fluorescent dye of 5H-benzo[ij]quinolizin-9-yl) eth-enyl]-4H-pyran-4-ylidene]propane-dinitrile (DCM2), together with a green fluorescent dye of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyroyran-o(6,7-8-i,j) quinolizin-11-one (C545T). The multilayer WOLEDs does not involve the doping process. The structure of the device is indium tin oxide (ITO)/ 4,4’,4’’-tris{N,-(3-methylphenyl)-N-phenylamin}triphenylamine (m-MTDATA) (55 nm)/ N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,1’-biph-enyl-4,4’-diamine (NPB) (10 nm)/ DPVBi (8 nm)/ C545T (x nm)/ DPVBi (5 nm)/ DCM2 (y nm)/ tris- (8-hydroxyquinoline) aluminum (Alq3) (60nm)/ LiF (1 nm)/ Al, where the DPVBi is introduced as a spacer. By changing the thicknesses of dual ultrathin layers of C545T and DCM2, the WOLED is obtained. When x=y=0.05, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.262 6, 0.351 4) at 4 V to (0.214 7, 0.269 3) at 12 V that are well in the white region. Its maximum luminance is 41400 cd/m2 at 13 V, and the maximum current efficiency and the maximum power efficiency are 7.95 cd/A at 6 V and 5.37 lm/W at 5 V, respectively.

WU Li-shuang, WANG Xiao-lin, YOU Jia-ping, SU Zi-sheng, YANG Hui-shan. Organic light-emitting devices based on 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl as a spacer between dual ultrathin layers[J]. 光电子快报(英文版), 2019, 15(2): 127.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!