首页 > 论文 > 光学与光电技术 > 17卷 > 2期(pp:41-47)

远场赝热关联成像技术研究

Far-Field Pseudothermal Correlation Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

与传统的成像技术不同, 赝热关联成像基于强度涨落统计测量, 仅采用一个不具有空间分辨率的桶探测器可以实现目标场景图像的采集, 具有探测灵敏度高、抗干扰能力强等优势。在实验室赝热关联成像验证的基础上提出了远场赝热关联成像系统样机, 系统主要包括激光光源、赝热场调制系统、散斑远场发射系统以及高灵敏度强度涨落探测系统等。由于该成像技术需要多次测量后进行重构计算, 为了提升系统信息采集效率和图像重构效果, 提出了基于非局部均匀滤波的图像重构算法, 充分利用先验信息, 有效提高图像复原的效果。最后通过仿真测试和实际成像试验验证了该方法的可行性, 试验结果表明提出的系统能对远程目标进行清晰成像, 并且在相同的采样次数下能够获得更好的复原效果。

Abstract

Different from the traditional imaging technology, the pseudo-thermal correlation imaging is based on the intensity fluctuation statistical measurement, which can realize the acquisition of the target scene image, using only one bucket detector without spatial resolution. And this method has the advantages of high detection sensitivity and strong anti-interference ability. In this paper, a far-field pseudo-thermal correlation imaging system is proposed which is mainly composed of laser, thermal field modulation system, speckle far field emission system and high-sensitivity intensity fluctuation detection system, etc. . Because the correlation imaging system is based on the principle of intensity fluctuation statistical measurement, it needs to be reconstructed after multiple measurements. An image reconstruction algorithm based on NLM filtering is applied in this paper, which makes full use of prior information to effectively improve the image restoration effect. Finally, the feasibility of the method is verified by simulation test and actual imaging test. The experimental results show that the proposed system can clearly image the remote target and obtain better recovery images under the same sampling times.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431.2

所属栏目:激光技术与应用

收稿日期:2018-10-23

修改稿日期:2018-12-17

网络出版日期:--

作者单位    点击查看

龚 望:华中光电技术研究所-武汉光电国家研究中心, 湖北 武汉 430223
逄浩君:上海航天控制技术研究所, 上海 201109
张智杰:华中光电技术研究所-武汉光电国家研究中心, 湖北 武汉 430223
余 徽:华中光电技术研究所-武汉光电国家研究中心, 湖北 武汉 430223

联系人作者:龚望(451379061@qq.com)

备注:龚望(1993-), 男, 硕士研究生, 主要研究方向为单光子成像探测技术。

【1】官斌, 何大华. 距离选通切片图像高精度三维重构方法[J]. 光学与光电技术, 2017, 15(6): 9-13.
GUAN Bin, HE Da-hua. High-precision 3D image reconstruction method by renge-gated slice images [J]. Optics & optoelectronic Technology, 2017, 15(6): 9-13.

【2】余徽, 陈华旺. 图像超分辨率技术研究进展[J]. 光学与光电技术, 2012, 10(5): 45-50.
YU Hui, CHEN Hua-wang. Research progress of image super-resolution technology[J]. Optics & optoelectronic Technology, 2012, 10(5): 45-50.

【3】D Angelo M, Shih Y H. Quantum imaging[J]. Laser Physics Letters, 2005, 2(12): 567.

【4】A Valencia, G Scarcelli, M D Angelo, et al. Two-photon imaging with thermal light[J]. Phys. Rev. Lett., 2005, 94: 063601.

【5】F Ferri, D Magatti, A Gatti, et al. High resolution ghost image and ghost diffraction experiments with thermal light[J]. Phys. Rev. Lett., 2005, 94: 183602.

【6】A Gatti, E Brambilla, M Bache, et al. Correlated imaging, quantum and classical[J]. Phys. Rev. Lett., A, 2004, 70: 013802.

【7】A Gatti, E Brambilla, M Bache, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93: 093602.

【8】Zerom P, Shi Z, O Sullivan M N, et al. Thermal ghost imaging with averaged speckle patterns[J]. Physical Review A, 2012, 86(6): 063817.

【9】Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840.

【10】Cheng J. Ghost imaging through turbulent atmosphere[J]. Optics express, 2009, 17(10): 7916-7921.

【11】Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

【12】Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 2011, 98(11): 111115.

【13】Karmakar S, Meyers R, Shih Y. Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light[C]//Quantum Communications and Quantum Imaging X. International Society for Optics and Photonics, 2012, 8518: 851805.

【14】Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging[J]. Physical Review A, 2013, 87(2): 023820.

【15】Han S, Yu H, Shen X, et al. A review of ghost imaging via sparsity constraints[J]. Applied Sciences, 2018, 8(8): 1379.

【16】P Chatterjee, P Milanfar. A generalization of non-local means via Kernel regression[C]. Computational Imaging VI. DBLP, 2008: 68140.

【17】A Buades, B Coll, J M Morel. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4: 490-530.

【18】T B Pittman. Optical imaging by means of two-photon quantum entanglement[J]. Phys. Rev. Lett., A, 1995, 52: R3429.

【19】M Protter, M Elad, H Takeda, et al. Generalizing the nonlocal-means to super-resolution reconstruction[J]. IEEE Transactions on Image Processing, 2009, 18: 36-51.

引用该论文

GONG Wang,PENG Hao-jun,ZHANG Zhi-jie,YU Hui. Far-Field Pseudothermal Correlation Imaging[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2019, 17(2): 41-47

龚 望,逄浩君,张智杰,余 徽. 远场赝热关联成像技术研究[J]. 光学与光电技术, 2019, 17(2): 41-47

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF