光谱学与光谱分析, 2019, 39 (7): 2100, 网络出版: 2019-07-23   

单子叶植物叶片双向反射分布的测量与分析

Measurement and Analysis of Bidirectional Reflectance Distribution in Monocotyledonous Leaves
作者单位
1 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
2 农业部光谱检测重点实验室, 浙江 杭州 310058
摘要
作物的生物含量与作物的光学特性有直接的关系, 而植物叶片的双向反射分布函数(BRDF)又直接影响植物的光学特性。 植物叶片的BRDF体现了叶片在各个方向不同的能量反射能力, 直接影响植物叶片的光谱检测结果, 也是植被冠层宏观光学特征的影响因素之一。 对植物叶片的BRDF光学特性及表现出的规律性展开研究和讨论, 能够有效提高植物无损检测光谱模型的稳定性和可靠性, 提升利用作物光谱模型反演理化特性的准确性和可靠性。 首先介绍了植物叶片的BRDF快速获取方法及自主研发的方向性光谱检测仪器, 该仪器能够在入射光的方位角和天顶角、 接收探头的方位角和天顶角这四个维度进行调整, 实现多入射角和反射角的反射光谱数据采集。 单子叶植物的叶脉呈纵向分布, 因而体现出较为显著的各向异性, 玉米和小麦是两种较为典型的单子叶农作物。 通过自主研发仪器获取不同波段范围下的玉米和小麦的反射光谱信息, 并分析总结其反射分布规律。 采用文中所介绍的BRDF计算方法对光谱数据以及白板校正数据进行计算, 再结合MATLAB程序对光谱反射数据的图像映射, 对反射结果与叶绿素含量和叶片含水量这两个叶片典型理化参数的相关性进行分析, 最后探讨了采用ANIX系数对叶片的各向异性进行量化分析的方法。 选取小麦在可见光波段以及玉米在近红外波段的数据, 结果表明, 小麦和玉米在各波段下的fr分布均关于入射天顶角两侧微小空间对称, 在相同波段下, 不同入射天顶角下的fr值大小基本一致; 在相同入射天顶角下, 小麦在800 nm波段下的fr值最大, 680 nm波段下的fr值最小, 这是由于680 nm波长附近是叶绿素强吸收的特征波段, 而800 nm附近是叶绿素反射的特征波段, 且在相同波段下, 叶绿素浓度的升高会导致fr值的增大; 在水的强吸收特征波段1 450 nm下, 玉米的fr值随着含水量的升高而增长。 分析表明, 作物的BRDF特性能够有效反映叶片主要生物含量的变化, 同时计算所得到的各向异性指数也体现出一致的变化规律, 为建立稳定且可靠的作物光谱定量分析模型提供了理论和实践基础。
Abstract
The biological content of crops is directly related to the optical properties of the crops, which are affected by the bidirectional reflectance distribution function (BRDF) of plants. The BRDF of plant leaves reflects the energy reflection ability of leaves in different directions and directly affects the spectral detection results of plant leaves, also one of the influencing factors of macroscopic optical characteristics of vegetation canopy. Studying the BRDF optical properties of plant leaves can effectively improve the stability and reliability of the plant NDT spectral model, thus improving the accuracy and reliability of using the crop spectral model to invert the physicochemical properties. In this paper, we first introduced the BRDF rapid acquisition method for plant leaves and the independently developed directional spectral detection instrument which can adjust the four dimensions of incident light azimuth and zenith angle, receiver probe azimuth and zenith angle to receive the reflectance data under multi-incidence and multi-reflectance angle. The leaf veins of monocotyledonous plants are longitudinally distributed, thus showing more significant anisotropy. Maize and wheat are two typical monocotyledonous crops. Then the self-developed instruments were used to obtain the reflectance spectra of corn and wheat under different wavebands, and their reflection distribution was analyzed and summarized. The spectral data and whiteboard correction data were calculated by using the BRDF calculation method described in this paper. In combination with the image mapping of spectral reflectance data from MATLAB program, the correlation of the reflectance results with two typical physicochemical parameters of leaves, chlorophyll content and water content was analyzed. After analysis, the method of using ANIX coefficient to quantitatively analyze the anisotropy of blade was discussed. The data of wheat in the visible light band and corn in the near infrared band were selected for final analysis. The results show that the fr distributions of wheat and corn in each band are symmetrical about the tiny space on both sides of the incident zenith angle, and the fr values under different incidence zenith angles are basically the same at the same band. Under the same incident zenith angle, wheat has the largest fr value at 800 nm, and the smallest fr at 680 nm. This is due to the strong absorption of chlorophyll near the 680 nm wavelength, and the strong reflectance near 800 nm. The increase of chlorophyll concentration will lead to the increase of fr value under the same band. At 1450 nm in the strong absorption band of water, the fr value of corn increases with the increase of water content. The analysis shows that the BRDF characteristics of crops can effectively reflect the changes of the main biological content of the leaves, and the calculated anisotropy index also shows a consistent change law, which provides a theoretical and practical basis for establishing a stable and reliable model for the quantitative analysis of crop spectra.

刘丁瑜, 易加维, 张徐洲, 张畅, 刘飞, 方慧, 何勇. 单子叶植物叶片双向反射分布的测量与分析[J]. 光谱学与光谱分析, 2019, 39(7): 2100. LIU Ding-yu, YI Jia-wei, ZHANG Xu-zhou, ZHANG Chang, LIU Fei, FANG Hui, HE Yong. Measurement and Analysis of Bidirectional Reflectance Distribution in Monocotyledonous Leaves[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2100.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!