光子学报, 2019, 48 (7): 0722001, 网络出版: 2019-07-31  

光学玻璃超声振动维氏压痕中位裂纹的实验研究

Experimental Investigation of Median Crack in Indentation of Optical Glass under Ultrasonic Vibration
作者单位
上海理工大学 机械工程学院, 上海 200093
摘要
为了进一步掌握光学玻璃材料超声振动辅助磨削亚表面损伤机理, 设计常规和超声振动条件下维氏压痕实验, 调查两种情况下K9光学玻璃压痕形貌特征; 采用磁性复合流体抛光方法检测K9光学玻璃压痕区域的中位裂纹深度, 对常规压痕系统中位裂纹模型进行两次系数修正, 获得超声振动条件下的维氏压痕系统中位裂纹深度模型.通过超声振动维氏压痕实验计算静态和动态断裂韧性, 得到两种加载条件的一次修正系数分别为0.08和0.06; 结合检测中位裂纹深度实验结果拟合获得的两种条件下二次修正系数数值接近, 分别为94.75和94.50.结果表明该模型对超声振动和加工条件具有良好的识别度.
Abstract
In order to further grasp the subsurface damage mechanism of ultrasonic vibration-assisted grinding of optical glass materials, the Vickers indentation experiment under non-ultrasonic vibration and ultrasonic vibration conditions was designed to investigate the indentation features of K9 optical glass under two conditions. The magnetic component fluid polishing was used to detect the depth of the median crack in the indentation area of K9 optical glass. The conventional model of median crack of indentation was modified twice to obtain the model of the Vickers median crack depth of the indentation under ultrasonic vibration conditions. The static and dynamic fracture toughness were calculated by experimental data of Vickers indentation under non-ultrasonic vibration and ultrasonic vibration conditions. The first correction coefficients of the two conditions were 0.08 and 0.06 respectively. Combined with the experimental results of the measured median crack depth, the values of the second correction coefficients under the two conditions were close under two conditions, which were 94.75 and 94.50 respectively. The results show that the new median crack depth model has a good recognition of ultrasonic vibration and processing conditions.

姜晨, 高睿, 姜臻禹, 郝宇. 光学玻璃超声振动维氏压痕中位裂纹的实验研究[J]. 光子学报, 2019, 48(7): 0722001. JIANG Chen, GAO Rui, JIANG Zhen-yu, HAO yu. Experimental Investigation of Median Crack in Indentation of Optical Glass under Ultrasonic Vibration[J]. ACTA PHOTONICA SINICA, 2019, 48(7): 0722001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!