液晶与显示, 2019, 34 (8): 748, 网络出版: 2019-10-12   

Mobile产品异物产生机理及改善研究

Reduction and mechanism of particles on mobile products
作者单位
重庆京东方光电科技有限公司, 重庆 400714
摘要
异物是TFT-LCD制程常见的顽固缺陷, 在高世代线(8.5代线)以摩擦工艺生产mobile产品时不良发生率更高。本文针对8.5代线生产Mobile产品时所产生的异物进行原因及机理分析, 发现该异物来源于摩擦制程, 产生机理为: 摩擦辊在玻璃基板上摩擦时, 布毛容易刮起配向膜而产生细小的PI碎屑。为此本文从摩擦强度、单辊摩擦和光配向工艺进行实验, 实验结果显示: 对于改善细小的PI碎屑最优工艺为光配向, 异物不良由2.34%降至0.41%。在最优的光配向工艺条件下继续优化清洗机条件: 在高压气液混合喷射(HPMJ)的压力8 MPa、清洗机速度6 600 mm/min和风刀喷淋(AK Shower)打开条件下异物不良降至0.16%, 改善效果明显。
Abstract
In the manufacturing process of TFT-LCD, Particles are commonly-encountered defects, which results in a high reject ratio when producing mobile products by rubbing technology in higher-generation production line (8.5 generation line). Focusing on the Particles arising from producing mobile dvices in 8.5 generation line, we analyzed its cause and mechanism. The analysis shows that the Particles originate from rubbing procedure. The mechanism suggests that as the rubbing roller rubs the glass substrate, the cloth is prone to scrapes alignment film to give rise to fine PI fragments. This paper carried out investigation of the rubbing strength, single roller friction and optical alignment technology. The results show that among the three methods mentioned, the optical alignment is the most efficient way to reduce the PI fragments, cutting the reject ratio down to 0.41% from 2.34%. Further, ARC(After rubbing cleaner) condition optimized under the light best alignment technology is obtained: 8 MPa of HPMJ(High pressure micro jet), speed of ARC at 6 600 mm/min and the opened AK(Air knife) Shower, which evidently lowers the reject ratio to 0.16%.

杨德波, 钟野, 毕芳, 樊明雷, 张志聪, 熊奇, 罗春, 李伟. Mobile产品异物产生机理及改善研究[J]. 液晶与显示, 2019, 34(8): 748. YANG De-bo, ZHONG Ye, BI Fang, FAN Ming-Lei, ZHANG Zhi-Chong, XIONG Qi, LUO Chun, LI Wei. Reduction and mechanism of particles on mobile products[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(8): 748.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!