首页 > 论文 > 光通信研究 > 45卷 > 5期(pp:14-18)

基于信号功率非线性变换的光信噪比监测

OSNR Monitoring Using Signal Power Nonlinear Transformation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于信号功率非线性变换, 结合神经网络, 文章提出了一种利用深度神经网络(DNN)实现光信噪比(OSNR)监测的方法。通过对信号功率、信号2次方、4次方和8次方运算后对应的快速傅里叶变换(FFT)后的幅度获取信号与OSNR相关特征量, 并利用DNN提取相关特征量以实现OSNR监测。仿真结果表明, 针对28 Gbaud 偏振复用(PDM)正交相移键控(QPSK)、PDM-8相移键控(PSK)、PDM-8正交振幅调制(QAM)和PDM-16QAM信号相干光通信系统, 对应的背靠背OSNR监测平均标准误差分别为0.10、0.09、0.33和0.46 dB。对这4种调制格式, 在入纤功率分别为4、4、3和3 dBm, 传输距离分别为2 000、1 040、1 040和800 km单模光纤时, 获得的OSNR监测平均标准误差分别为0.43、0.34、0.66和0.79 dB。

Abstract

This paper proposes and demonstrates an Optical Signal Noise Ratio (OSNR) monitoring scheme using the signal power nonlinear transformation and Deep Neural Networks (DNN). The features of signal after 2th, 4th, and 8th transformation and corresponding Fast Fourier Transformation (FFT) depend on the OSNR of signal. By utilizing the DNN to extract those OSNR depended specific features, the OSNR value can be estimated. Simulation results for 28 Gbaud Polarization Division Multiplexing (PDM)-Quadrature Phase Shift Keying (QPSK), PDM-8 Phase Shift Keying (PSK), PDM-8 Quadrature Amplitude Modulation (QAM) and PDM-16QAM signals show that the OSNR monitoring with mean estimation standard errors of 0.10, 0.09, 0.33 and 0.46 dB in back-to-back case and 0.43, 0.34, 0.66 and 0.79 dB in 2 000, 1 040, 1 040 and 800 km single mode fiber transmission case with input optical power of 4, 4, 3 and 3 dBm, respectively.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.13756/j.gtxyj.2019.05.003

所属栏目:光通信系统与网络技术

基金项目:国家自然科学基金资助项目(61401378)

收稿日期:2019-03-04

修改稿日期:--

网络出版日期:--

作者单位    点击查看

刘恒江:西南交通大学 信息科学与技术学院 信息光子与通信研究中心, 成都 611756
易安林:西南交通大学 信息科学与技术学院 信息光子与通信研究中心, 成都 611756

联系人作者:易安林(anlinyi@home.swjtu.edu.cn)

备注:刘恒江(1993-), 男, 云南曲靖人。硕士, 主要研究方向为光通信与信号处理。

【1】Dong Z,Khan F N,Sui Q,et al.Optical Performance Monitoring:A Review of Current and Future Technologies[J].Journal of Lightwave Technology,2016,34(2):525-543.

【2】静国刚, 陈长松, 刘占斌.基于OSNR感知的SDON路径优化机制[J].光通信研究, 2017(1):7-9.

【3】Khan F N,Zhong K,Zhuo X,et al.Joint OSNR Monitoring and Modulation Format Identification in Digital Coherent Receivers using Deep Neural Networks[J]. Optics Express,2017,25(15):17767-17776.

【4】Schmogrow R, Nebendahl B, Winter M, et al. Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats[J]. IEEE Photonics Technology Letters, 2012, 24(1): 61-63.

【5】Chitgarha M R, Khaleghi S, Daab W, et al. Demonstration of in-Service Wavelength Division Multiplexing Optical-Signal-to-Noise Ratio Performance Monitoring and Operating Guidelines for Coherent Data Channels with Different Modulation Formats and Various Baud Rates[J]. Optics Letters, 2014, 39(6): 1605-1608.

【6】Lundberg L, Sunnerud H, Johannisson P. In-band OSNR Monitoring of PM-QPSK using the Stokes Parameters[C]//Optical Fiber Communication Conference. Los Angeles, USA: OSA Technical Digest, 2015: W4D.5.

【7】Yi A l,Yan L S,Liu H J,et al.Modulation Format Identification and OSNR Monitoring using Density Distributions in Stokes Axes for Digital Coherent Receivers[J].Optics Express,2019,27(4):4471-4479.

【8】Do C,Tran A V,Zhu C,et al.Data-aided OSNR Estimation for QPSK and 16-QAM Coherent Optical System[J].IEEE Photonic Journal,2013,5(5):6601609.

【9】Oda S, Yang J Y, Akasaka Y, et al. In-band OSNR Monitor using an Optical Bandpass Filter and Optical Power Measurements for Superchannel Signals[C]//Conference and Exhibition on Optical Communication. London, UK: IEEE,2013: 1-3.

【10】席丽霞, 彭文雨, 杨松, 等.用偏振模色散模拟器加偏振片实现带内光信噪比检测[J].光电子·激光, 2014(1):51-55.

【11】张肃, 王目光.基于广义回归神经网络的色散和OSNR监测[J].光电技术应用, 2018, 33(1):30-35.

【12】Wang D S, Zhang M, Li J, et al. Intelligent Constellation Diagram Analyzer using Convolutional Neural Network-based Deep Learning[J]. Optics Express, 2017, 25(15): 17150-17166.

引用该论文

LIU Heng-jiang,YI An-lin. OSNR Monitoring Using Signal Power Nonlinear Transformation[J]. Study On Optical Communications, 2019, 45(5): 14-18

刘恒江,易安林. 基于信号功率非线性变换的光信噪比监测[J]. 光通信研究, 2019, 45(5): 14-18

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF