发光学报, 2020, 41 (8): 964, 网络出版: 2020-08-06  

金红石型TiO2/ZnTiO3复合材料的制备及其光催化性能

Preparation and Photocatalytic Activity of Rutile-TiO2/ZnTiO3 Composite
作者单位
1 成都大学 机械工程学院, 四川 成都 610106
2 四川新亚无损检测有限公司, 四川 成都 610213
摘要
采用溶胶-凝胶法制备了金红石型TiO2/ZnTiO3复合光催化剂, 对其进行650 ℃保温1 h的热处理; 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、荧光光谱(PL)对样品进行表征, 并以亚甲基蓝(MB)溶液为目标污染物, 研究了样品的光催化性能。结果表明, TiO2为金红石结构, 随着Zn/Ti量比增加, TiO2晶粒尺寸减小; 当Zn/Ti的量比达到2%时, 有新相ZnTiO3生成。TiO2/ZnTiO3(Zn/Ti=8%)展现出最高的光催化活性, 这归因于表面羟基含量增加以及形成的TiO2/ZnTiO3半导体复合结构加快了光生电子与空穴的转移。反应进行90 min后, 对MB的降解率达到68.3%, 反应速率常数k为0.012 min-1, 分别为纯TiO2的1.85倍和3倍。
Abstract
The rutile-TiO2/ZnTiO3 composite photocatalysts were synthesized by a sol-gel method, and were heat treated at 650 ℃ for 1 h. The obtained samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS) and photoluminescence spectra(PL). The photocatalytic performance of samples was studied taking the degradation of methylene blue(MB) as the target reactant. The results show that the crystal structure of TiO2 is rutile phase and the grain size of TiO2 decreases with the increasing Zn/Ti molar ratio. ZnTiO3 forms when the Zn/Ti molar ratio reaches 2%. TiO2/ZnTiO3(Zn/Ti=8%) exhibits the highest photocatalytic activity, which can be attributed to the increase of surface hydroxyl content and the formation of TiO2/ZnTiO3 semiconductor composite structure, accelerating the transfer of photogenerated electrons and holes. After 90 minutes of reaction, the degradation rate of MB by TiO2/ZnTiO3(Zn/Ti=8%) reaches 68.3% and the reaction rate constant k is 0.012 min-1, which are 1.85 times and 3 times higher than that of pure TiO2.

朱晓东, 王娟, 罗宇浩, 代华龙, 喻强, 冯威. 金红石型TiO2/ZnTiO3复合材料的制备及其光催化性能[J]. 发光学报, 2020, 41(8): 964. ZHU Xiao-dong, WANG Juan, LUO Yu-hao, DAI Hua-long, YU Qiang, FENG Wei. Preparation and Photocatalytic Activity of Rutile-TiO2/ZnTiO3 Composite[J]. Chinese Journal of Luminescence, 2020, 41(8): 964.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!