光谱学与光谱分析, 2020, 40 (9): 2756, 网络出版: 2020-11-25  

基于天空光遮挡法的漂浮式水体光谱测量系统研制

Development of a Novel Floating Water Spectral Measurement System Based on Skylight-Blocked Approach
作者单位
1 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079
2 自然资源部国家卫星海洋应用中心, 北京 100081
3 Easy Ocean Technology Ltd., Halifax, B3H 1N4, Canada
摘要
精确的现场水体光谱特性测量与分析是水色遥感领域亟待解决的重要基础问题。 传统的剖面法、 水面之上法等水体光谱现场测量方法无法直接测得离水辐亮度(Lw), 后处理过程比较复杂, 不确定性较大。 天空光遮挡法(SBA)实现了对水体离水辐亮度的直接测量后处理流程相对简单, 能较好地避免传统现场光谱测量方法的许多不确定因素。 但目前为止, 国际上还没有成熟的基于SBA方法的水体光谱测量系统, 因此基于SBA方法开展新型水体光谱测量系统研制与测试具有重要的理论与现实意义。 作者在系统分析SBA水体光谱现场获取原理的基础上, 介绍了首套基于SBA方法的漂浮式水体光谱测量系统的研发情况, 详细阐述了其硬件结构设计及系统单元设置情况。 通过2017年9月20日珠江口(113°32′38″E, 22°25′43″N)的系统现场测试分析验证了该系统分钟级高频次连续水体光谱采集能力。 该系统实现了连续直接观测得到离水辐亮度和入射辐照度进而计算得到遥感反射率(Rrs)的功能, 其变异系数均小于5%, 将系统观测结果与Maya2000 Pro同步观测获得的遥感反射率对比, 表现出良好的一致性, 证明了该系统采用SBA方法进行水体遥感反射率测量的有效性。 连续观测实验证明了该系统水体遥感反射率测量的稳定性以及快速跟踪水体光学特征变化的能力。 论文指出了基于SBA漂浮式水体光谱测量系统发展起来的漂浮式光学浮标(FOBY)在自阴影评估与校正、 数据质量控制、 数据高频获取、 浮标姿态记录、 多要素联合观测、 长时序大范围组网等方面存在的问题及未来发展前景。 综上所述, 基于SBA方法研发的漂浮式水体光谱测量系统能实现水体光谱的高频观测, 以及水体光学特性的快速变化动态跟踪, 有助于提高现场测量与卫星遥感数据的匹配效率; 基于该系统, 在建立传感器观测网的基础上可以获取水体光谱大数据集, 有利于大幅提高各种卫星数据水色遥感应用潜力。
Abstract
It has been a long-standing and challenging goal to precisely measure water-leaving radiance (Lw) in ocean color remote sensing. Conventional approaches like in-water profile method, above-water method and other water measurement methods cannot directly measure Lw. Thus, they demand complex post-measurement processes, which cause many uncontrollable factors. Skylight-blocked approach (SBA), proposed by Zhongping Lee in 2013, was an innovative method to directly measure Lw, which can avoid uncertainties caused by post-measurement processes. However, no water spectral measurement system based on SBA has been developed so far. It is of great theoretical and practical significance to develop and test such equipment. Based on SBA, a water spectral measurement system was developed in this study. Firstly, the principles of the field water-spectrum measurement method, SBA is introduced. Then, the hardware structure and system design of the system are described in detail. The field experiment in Pearl River Estuary (113°32′38″E, 22°25′43″N) was carried out on September 20, 2017 to test the continuous measurement ability of the system. The system can measure Lw and downward irradiance of water (Es) directly and synchronously and then calculated the Rrs. The coefficients of variation (CV) of them are less than 5%, which basically proves the effectiveness of the water spectral measurement system in Lw measurement. The measurements results of the system are in good agreement with those of Maya2000 Pro synchronous. The continuous observation experiments show the stability of measurements and the ability to track the change of optical characteristics of water. The existing problems and future development prospects are pointed out, such as self-shading correction, data quality control, high frequency measurement, buoy tilts recording, multi-factor joint measurement, long time series and large range networking, etc. To summarize, the water spectral measurement system based on SBA called the Floating Optical Buoy (FOBY) can measure Lw directly in high the frequency of minutes which can track the rapid dynamic change of water optical characteristics. It is expected to improve the matching efficiency between in-situ measurement data and satellite remote sensing data. Based on the system, big data sets of water spectral can be obtained by means of the network. It is conducive to greatly improve the application potential of various satellite data on ocean color remote sensing.

田礼乔, 李森, 孙相晗, 童如清, 宋庆君, 孙兆华, 李勇. 基于天空光遮挡法的漂浮式水体光谱测量系统研制[J]. 光谱学与光谱分析, 2020, 40(9): 2756. TIAN Li-qiao, LI Sen, SUN Xiang-han, TONG Ru-qing, SONG Qing-jun, SUN Zhao-hua, LI Yong. Development of a Novel Floating Water Spectral Measurement System Based on Skylight-Blocked Approach[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2756.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!